碳水化合物本质上是极其有价值的有机分子,并且参与了各种至关重要的生命维持过程,包括免疫反应,受精和细胞 - 细胞相互作用。6它们代表了药物发现中的一类特权化合物,其中一百多个基于碳水化合物的小分子已经销售以治疗各种疾病。考虑碳水化合物的结构多样性和生物学活性,将糖部分纳入DNA标签上,以制造含糖的DELS。然而,由于糖分子的结构复杂性,将糖与DNA标签联系起来的化学反应仍然极为罕见。7在2021年,我们的小组报告了一种水兼容的方法,可以通过糖基辐射来制备C连接的糖缀合物。在这种方法中,我们开发了亚氧化亚氧化物
DNA 编码化合物库 (DEL) 已成为学术界和制药行业识别化合物的强大而经济的工具。1 图 1a 显示了通过 DEL 技术发现的一些先导化合物。2 基于亲和力选择,可以在一次实验中方便地同时筛选数百万到数十亿个针对生物靶标的 DNA 编码分子。DNA 编码库中的每个化合物都与一个编码分子结构信息的独特 DNA 序列结合。与传统筛选策略相比,DEL 技术在成本、速度和规模方面具有优势。3 然而,所需的 DNA 标签不溶于大多数有机溶剂且易降解或修饰,这限制了构建 DEL 的可用合成方法。4 为了构建结构多样且与药物相关的 DNA 编码库,开发更多与 DNA 兼容的反应势在必行。5
1个糖作物研究所,糖作物疾病和害虫研究,农业研究中心,吉萨,埃及,埃及2,生物技术系埃及吉萨(Giza)的农业研究中心,5植物保护和生物分子诊断部,ARID土地耕地研究所,科学研究与技术应用,新博格·阿拉伯,阿拉伯,埃及,埃及,埃及,6个植物学系,埃及学系,Zagazig University,Zagazig and Zagazig,Zagazig,Zagazig,Zagazig,Zagazig,Zagazig,Genertic and genticn and egyptic,埃及,埃及,埃及,埃及,埃及。萨达特城大学,萨达特城大学,埃及,农业植物学8号农业学院(萨巴巴沙),亚历山大大学,亚历山大,埃及,
摘要。- 目的:当前的研究旨在重新核能糖尿病2型糖尿病(DMT2)对经过固定正差治疗的个体的牙龈囊泡流体(GCF)中晚期糖基化最终产物(AGE)和促炎性趋化因子的结果。患者和方法:根据包含和排除十分组,将参与者分为糖尿病和无糖尿病人群。功率分析是从一项预先研究的研究中采用的,该研究报告了肥胖个体中GCF趋化因子。所有牙齿均用于临床牙周参数(CPP)。GCF和唾液。GCF的促炎细胞因子均以PG/mL表示。使用磁珠的多重分析对Luminex®平台进行趋化因子的定量。数据的非正态性由Mann-Whitney U检验评估。正态性。以标准偏差和均值的形式计算描述性数据。结果:与非糖尿病患者相比,糖尿病患者未刺激的整个唾液流量(UWSFR)明显降低(p = .021)。在不同的临床牙周化对象(CPP)之间,在二型和非糖尿病参与者之间没有发现斑块评分(PS)和探测深度(PD)的差异。与非二 - 基本组相比,观察到DMT2参与者的两种GCF趋化因子(P = .031)和年龄(p = .017)在DMT2参与者中显着高。CPP和GCF生物标志物在糖尿病患者中与探测(BOP)出血(BOP)之间的年龄和GCF抵抗素水平之间存在正相关。结论:与正畸设备进行DMT2对齐的参与者
越来越多的证据表明纤维化在糖尿病性心肌病 (DCM) 中起着重要作用,但其潜在机制仍不清楚。考虑到分化簇 147 (CD147) 在纤维化疾病发病机制中的作用不同且重叠,我们旨在研究 CD147 在 DCM 纤维化中的作用并探索其潜在机制。AAV9 介导的心脏特异性 CD147 沉默减轻了糖尿病小鼠的心脏纤维化和心脏功能。CD147 敲低显著抑制了高糖 (HG) 诱导的 CFs 活化。从机制上讲,CD147 直接与 I 型转录生长因子 β (TGF- β ) 受体 I (ALK5) 结合,促进 ALK5 活化和内吞作用从而诱导 SMAD2/3 磷酸化和核易位。此外,HG 通过促进 GNT-V 介导的 N-糖基化阻止了 CD147 的泛素蛋白酶体依赖性降解。因此,对照小鼠中心脏特异性 CD147 过表达模仿了糖尿病引起的心脏纤维化,加重了心脏功能。重要的是,与非糖尿病患者相比,糖尿病患者的血清和心肌标本中的 CD147 也上调,并伴有心脏功能障碍和胶原沉积过多的超声心动图指标。我们的研究首次证明 CD147 是促进糖尿病心脏纤维化的关键因素,并可能有助于未来基于 CD147 的 DCM 治疗策略的发展。
癌症中的两种已知表观遗传改变是CpG岛甲基化(CIMP)和全基因组降压甲基化。尤其是,大约20-40%的黑色素瘤,三阴性乳腺癌,严重的卵巢癌和严重的子宫内膜癌的特征是全基因组降低甲基化的特征,可以通过挖掘TCGA甲基化数据来记录,这些甲基化可以记录下来。脱甲基化剂(例如,去替替替啶和阿Zacytidine)是一种癌症的有效表观遗传疗法,靶向CIMP表型,目的是重新激活受高甲基化沉默的基因表达。但是,没有努力专门针对癌症中全基因组的甲基化。已经确定,具有明显的全基因组低甲基化的癌症表现出在活性DNA脱甲基化途径中工作的DNA去甲基酶的表达升高。因此,对这些脱甲基酶的抑制有望拮抗,纠正和重新编程全基因组低甲基化,从而抑制致癌途径并获得治疗益处。
摘要 珊瑚的生态成功归功于它们与甲藻 (Symbiodiniaceae) 的共生关系。虽然人们对热应激对这种共生关系的负面影响进行了深入研究,但对热应激如何影响共生关系的开始和共生体特异性的研究较少。在这项工作中,我们使用模型海葵 Exaiptasia diaphana (通常称为 Aiptasia) 及其本地共生体 Breviolum minutum 来研究热应激对藻类对 Aiptasia 的定殖以及藻类细胞表面糖组的影响。热应激导致藻类对 Aiptasia 的定殖减少,这并不是由于藻类运动或氧化应激等混杂变量造成的。利用质谱分析和凝集素染色,我们鉴定出热诱导的聚糖富集(以前发现与自由生活的藻类菌株有关,高甘露糖苷聚糖),同时鉴定出与共生藻类菌株有关的聚糖(半乳糖基化聚糖)减少。我们还鉴定出特定唾液酸聚糖的差异富集,尽管它们在这种共生关系中的作用仍不清楚。我们还讨论了用于分析藻类细胞表面糖组的方法,评估了当前的局限性,并为藻类-珊瑚糖生物学的未来工作提供了建议。总体而言,这项研究深入了解了压力如何通过改变共生生物伙伴的糖组来影响刺胞动物与其藻类共生体之间的共生关系。
胞嘧啶和5-甲基胞嘧啶的水解脱氨基驱动许多在人类癌症中观察到的过渡突变。脱氨基诱导的诱变中间体包括尿嘧啶或胸腺素加合物误导了鸟嘌呤。虽然存在多种方法来测量其他类型的DNA加合物,但胞质脱氨基加合物却带来了异常的分析问题,并且尚未开发出足够的测量方法。我们在这里描述了一种新型的杂化胸腺素DNA糖基化酶(TDG),该糖基化酶(TDG)由与胸腺糖基化酶在古细菌中发现的29个氨基酸序列组成,该序列是与胸腺素糖基化酶的催化结构域相关的29-氨基酸序列。使用定义的序列寡核苷酸,我们表明杂交TDG具有强大的失误选择性活动,以对脱氨酸u:g和t:g mistairs。我们进一步开发了一种将糖基酶释放的游离碱与oli-Gonucleotides和DNA分离的方法,然后是GC - MS/MS定量。使用这种方法,我们在第一次测量了尿嘧啶,u:g和t:g对的水平。此处介绍的方法将允许测量一类具有生物学上重要的脱氨酸胞嘧啶加合物类别的结构,持久性和修复。
摘要:线粒体功能障碍和氧化应激是许多人类疾病的突出特征。线粒体功能的失调代表了神经退行性疾病和癌症等疾病的常见致病机制。烟酰胺腺嘌呤二核苷酸(NAD +)池的维持和阳性NAD + /NADH比率对于线粒体和细胞功能至关重要。NAD +的合成和降解及其主要中间体在细胞室之间的运输是维持最佳NAD水平的重要作用,可调节NAD +限制酶,例如Sirtuins(Sirt),例如ADP-ribose聚合酶,综合酶聚合酶和CD38/157 Enzymes,并且在静脉内外表现出色。在这篇综述中,我们介绍并讨论了NAD +,NAD +填充酶,线粒体功能和疾病之间的联系。试图用补充NAD +循环中间体和SIRTUINS和ADP-核糖基转移酶抑制剂来治疗各种疾病,可能会突出一种可能的治疗方法,用于治疗癌症和神经退行性疾病。
摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言
