机器学习越来越多地应用于系统发育推断中的广泛问题。依靠模拟培训数据的监督机器学习方法已用于推断树拓扑和分支长度,选择替代模型并执行下游渗入和多样化的下游推断。在这里,我们回顾了研究人员如何使用多种有希望的机器学习方法来做出系统发育推断。尽管有这些方法的承诺,但有几个障碍阻止了监督的机器学习在系统发育方面具有全部潜力。我们讨论了这些障碍和潜在的路径。将来,我们预计应用仔细的网络设计和数据编码将允许监督的机器学习,以适应继续混淆传统系统发育方法的复杂过程。
系统发育树是一个分支图,代表基于物理或遗传相似性和差异的物种或分类单元之间的进化关系。它说明了他们共同的进化史和祖先的共同历史,在地球上所有生命在理论上都是单个系统发育树的一部分。计算系统发育学使用算法来确定这些关系的最准确表示。在数学优化的语言中,系统发育树是一棵所谓的施泰纳树(第三级)。尽管史坦纳树在文献中得到了很好的研究,但理论上很难(NP-hard)和实践。在本论文中,我们专注于建造施泰纳树。以瑞士数学家Jakob Steiner命名的Steiner树问题是组合优化问题,也是对最小跨越树的概括。最小跨越的树将图中的所有节点连接到最小的边缘长度总和最小的树中。相比之下,斯坦纳树可能包括预定义集合中的其他节点,以进一步最大程度地减少整个网络长度,从而使选择最佳施泰纳点具有挑战性。对于系统发育树,这种施泰纳指向进化史上的祖先。由于进化史受到不利影响的影响,因此也需要考虑后者。硕士论文的第一部分是关于系统发育和施泰纳树的文献的摘要。论文应该从应进一步发展的现有算法思想开始。主要贡献应该是通过利用贝叶斯方法在不确定性下优化植物树的算法的开发和实施。该论文主题来自与地理Nordbayern(FAU)的合作。
描述有效实施系统发育树的创建,修改和分析。应用包括:具有指定形状的树的产生;树木重排;树状分析;树木的生根和子树的提取;计算和描述分裂支持;绘制流氓分类单元的立场(Klopfstein&Spasojevic 2019);祖先 - 居民关系的计算,“干性”(Asher&Smith,2022)和树的平衡(Mir等人(Mir等)2013,Lemant等。 2022),;人工灭绝(Asher&Smith,2022);从Newick,Nexus进口和出口树木(Maddison等人。 1997),tnt 格式;以及分裂和cladistic信息的分析。2013,Lemant等。2022),;人工灭绝(Asher&Smith,2022);从Newick,Nexus进口和出口树木(Maddison等人。1997),tnt 格式;以及分裂和cladistic信息的分析。
plot_lambda。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 PS_ADD_DISSIM。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 ps_canape。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 PS_CANAPER。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 9 ps_dissim。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 10 ps_divery。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8 PS_CANAPER。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 ps_dissim。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 ps_divery。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 ps_get_comm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 ps_ortial。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 ps_prioritize。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 ps_rand。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 ps_gregions。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 ps_regions_eval。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 ps_rgb。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 ps_仿真。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23量化。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 to_spatial。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25
1乔治·S·S·乔治·S·怀斯·怀斯(George S. 6997801,以色列4雷蒙德和贝弗利·萨克勒精确科学学院,特拉维夫大学,特拉维夫6997801,以色列5植物科学与食品安全学院,乔治·S·S·S·S·S·S·乔治·S·乔治·S。乔治·S。电子邮件:talp@tauex.tau.ac.il电子邮件:talp@tauex.tau.ac.il
系统发育研究是理解植物物种的进化关系和历史轨迹的基石,阐明了生物多样性,生态适应和遗传遗产。这项研究通过结合形态学,分子和生物信息学方法的综合方法来研究植物分类群的进化历史。通过采用先进的系统发育重建技术,包括最大似然和贝叶斯推断,并利用全面的基因组数据集,这项研究发现了谱系差异和对地质时间尺度的物种形成事件。特别重点是确定保守和适应性特征的进化意义,从而阐明了推动植物多样化的遗传和环境因素。该研究还研究了水平基因转移,杂交和多倍体在塑造植物进化模式中的作用。通过映射关键遗传标记的分布,这项工作提供了有关历史气候变化,栖息地分裂和种间相互作用如何影响植物进化和适应性策略的见解。结果揭示了各种系统发育分支之间遗传差异和收敛的明确模式,突出了
近年来,肠道菌群与中枢神经系统 (CNS) 发育之间的关联引起了广泛的研究关注。有证据表明,CNS 和肠道菌群通过脑肠轴进行双向交流。作为一个长期而复杂的过程,CNS 发育极易受到内源性和外源性因素的影响。肠道菌群通过调节神经发生、髓鞘形成、神经胶质细胞功能、突触修剪和血脑屏障通透性来影响 CNS,并与各种 CNS 疾病有关。本综述概述了肠道菌群与 CNS 发育阶段(产前和产后)之间的关系,强调了肠道微生物的不可或缺的作用。此外,本综述还探讨了肠道菌群在神经发育障碍(如自闭症谱系障碍、雷特综合征和安格曼综合征)中的影响,为早期发现、及时干预和创新治疗提供了见解。
Isognomon (Lightfoot, 1786) 是一种牡蛎属,分布于世界各地的各种沿海生态系统中。它与其他双壳类动物一起,在海洋生态系统中发挥着重要的生态功能,为鱼类和无脊椎动物提供食物和栖息地、过滤水和保护海岸线。由于 Isognomon 牡蛎的表型特征多样或隐蔽,尤其是贝壳特征,因此对其进行分类可能具有挑战性。在本研究中,从印度尼西亚北苏拉威西省利库庞的红树林水域采集了两个具有不同贝壳特征的 Isognomon 牡蛎样本,并对其进行了分子分析以确定其身份。为此,使用线粒体细胞色素 C 氧化酶亚基 I (COI) 基因作为引物,并通过将它们与 GenBank 数据库进行比较来确定两个样本的遗传距离和系统发育位置。基本局部比对搜索工具 (BLAST) 显示两个样本属于 Isognomon ephippium ,相似性为 99.84%。使用 Tamura Nei 模型计算两个样本之间的遗传距离为 0.00,而 I. ephippium 与 Isognomon 属其他物种之间的遗传距离介于 0.00 至 0.14 之间。邻接 (NJ) 树分析的结果显示两个样本与 I. ephippium 聚在一起,将其分为两个不同的分支,在节点处的强自举值为 100。关键词:双壳纲,COI 基因,isognomon,牡蛎,北苏拉威西岛。引言
图2:B-1A细胞在发育过程中B-1A细胞的少突胶质细胞的发育控制机理,B细胞被CXCL13从血液中吸引,CXCL13是由脉络膜丛产生的,并被定位于边界区域,例如脉络膜丛和脑膜。这些B细胞将其性质变成B-1A细胞,产生天然抗体,促进OPC的生长并控制少突胶质细胞的成熟。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年10月1日发布。 https://doi.org/10.1101/2024.03.20.586035 doi:Biorxiv Preprint