1 ICBAS-Abel Salazar 生物医学科学研究所,波尔图大学,Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto,葡萄牙 2 鲁汶大学-微生物学、免疫学和移植系,Rega 研究所,病毒学和化学疗法实验室,B-3000 鲁汶,比利时 3 质量控制和食品安全部,Grupo Jerónimo Martins,Rua Nossa Sra. do Amparo, 4440-232 波尔图,葡萄牙 4 科英布拉大学医学院 CNC 神经科学和细胞生物学中心,Rua Larga, Polo I, 3004–504 科英布拉,葡萄牙 5 波尔图大学药学院,Rua de Jorge Viterbo Ferreira, 228, 4050-313 波尔图,葡萄牙 6 海洋与环境研究跨学科中心(CIIMAR),波尔图邮轮码头,Leixões,Av. General Norton de Matos s/n, 4450-208 Matosinhos, 葡萄牙 * 通信地址:pmcosta@icbas.up.pt;电话:+351-220428306 † 这些作者对这项工作做出了同等贡献。
摘要:谷物产量是玉米中最关键和最复杂的定量性状。内核长度(KL),内核宽度(kW),内核厚度(KT)和与核大小相关的数百 - 内核重量(HKW)是玉米中与产量相关性状的必不可少的组成部分。通过广泛使用定量性状基因座(QTL)映射和全基因组关联研究(GWAS)分析,已经发现了数千个QTL和定量性状核苷酸(QTN)来控制这些性状。但是,只有其中一些被克隆并成功地用于育种计划。在这项研究中,我们详尽地收集了与四个性状相关的基因,QTL和QTN,进行了QTL和QTN的聚类识别,然后将QTL和QTN簇合并以检测共识热点区域。总共确定了与内核大小相关性状的31个热点。他们的候选基因被预测与调节内核发展过程的众所周知的途径有关。可以进一步探索识别的热点,以进行细化和候选基因验证。最后,我们提供了高产和优质玉米的策略。这项研究不仅会促进因果基因的克隆,还可以指导玉米的繁殖实践。
摘要:关于先进摩擦学系统的研究的进行,以确定包含这些系统的技术对象的耐用性和可靠性的最佳解决方案,由于操作过程中发生的摩擦学过程的复杂性,需要采取多方面且全面的方法。观察这些过程是复杂的,并且由于摩擦区的无法获取性而受到限制。因此,改善摩擦学特征的进展主要取决于开发实验室测试方法。从描述表面层的摩擦学特性的角度,表面的几何结构(形状,波浪,粗糙度和表面缺陷),物理化学区域的结构(微结构,机械性能,物理化学特性)以及与润滑剂正确相互作用的能力。因此,对高级摩擦学系统的研究应包括两种互补的测试方法,即摩擦磨损测试和表面层测试(如制造和操作)。本文提出了一个研究高级摩擦学系统的概念,以及对这些系统进行互补研究的理由,指的是选定的示例(加工工具,关节植入物和牙科植入物)。研究结果是说明进行互补研究的本质的例子。
摘要:针对混合动力船舶推进系统输出功率和负载需求具有较大的波动性和不确定性,本文提出了一种船舶推进系统分层协同控制能量管理方案。在第一层控制方案中,对传统扰动算法进行改进,增加振荡检测机制、确立动态扰动步长,实现最大功率点跟踪控制的实时稳定性。在第二层控制方案中,引入功率敏感度因子和电压电流双闭环控制器,通过设计基于动态下垂系数的两层协调控制策略,解决了负载切换引起的电压、频率偏差问题。在第三层控制方案中,由于最优调度功能的需要,从引入突变因子、改进速度公式、重新初始化策略3个方面对多目标粒子群优化算法进行改进。与其他算法的对比,证明了该算法在日前优化调度策略中的有效性。验证了所提分级协同优化控制方案的优越性,电能损耗降低39.3%,总体跟踪时间延长15.4%,柴油发电机组环境成本降低8.4%,该控制策略解决了稳态振荡阶段和偏离跟踪方向的问题,能有效抑制电压和频率波动。
816–821。[11] Lowder L,Malzahn A,Qi YP. Rapid evolution of manifold CRISPR systems for plant gene editing. Front Plant Sci, 2016, 7: 1683。[12] Maeder ML,Linder SJ,Cascio VM,等。CRISPR RNA引导的内源性人类基因激活。Nat Methods, 2013, 10(10): 977-979。[13] Lindhout BI,Pinas JE,Hooykaas PJJ,等。利用锌指人工转录因子文库筛选拟南芥同源重组突变体。Plant J, 2006, 48(3): 475-483。[14] Liu WS,Rudis MR,Peng YH,等。合成TAL效应物用于靶向增强植物转基因表达。Plant Biotechnol J,2014,12(4):436-446。[15] Qi LS、Larson MH、Gilbert LA等。将CRISPR重新用作RNA引导平台,用于序列特异性控制基因表达。Cell,2013,152(5):1173-1183。[16] Chylinski K、Le Rhun A、Charpentier E。II型CRISPR-Cas免疫系统的tracrRNA和Cas9家族。RNA Biol,2013,10(5):726-737。[17] Nishimasu H、Cong L、Yan WX等。金黄色葡萄球菌Cas9的晶体结构。Cell,2015,162(5):1113-1126。 [18] Jinek M, Jiang FG, Taylor DW 等. Structures of Cas9 endonucleases reveal RNA-mediated configuration activity. Science, 2014, 343(6176): 1247997。[19] Anders C, Niewoehner O, Duerst A 等. Structural basis of PAM-dependent target DNA identification by the Cas9 endonuclease. Nature, 2014, 513(7519): 569-573。[20] Wang Y, Zhang ZT, Seo SO 等. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9. Biotechnol Bioeng, 2016, 113(12): 2739-2743。[21] Bikard D, Jiang WY, Samai P 等.利用工程化的 CRISPR-Cas 系统可编程地抑制和激活细菌基因表达。Nucleic Acids Res,2013,41(15):7429-7437。[22] Didovyk A、Borek B、Tsimring L 等人。利用 CRISPR-Cas9 进行转录调控:原理、进展和应用。Curr Opin Biotechnol,2016,40:177-184。[23] Li ZX、Xiong XY、Li JF。工作死物:将失活的 CRISPR 相关核酸酶重新用作植物中的可编程转录调节剂。aBIOTECH,2020,1(1):32-40。[24] Piatek A、Ali Z、Baazim H 等人。RNA 引导的
EOS Space Systems 首席执行官 Glen Tindall 表示:“EOS 一直致力于通过财政和其他援助为下一代澳大利亚 STEM 研究人员提供支持。研发和创新是 EOS 的核心,EOS Space Systems 员工中有很大一部分受过博士学位教育。下一代澳大利亚空间科学家和工程师对于保持 EOS 在全球空间技术方面的领先地位至关重要,同时也有助于建立持久、具有全球竞争力的国内空间产业。EOS Space Systems 很高兴再次与 ATSF 合作,并祝贺 2022 年获奖者。”
1 卢森堡理工大学能源系统学院,53850 拉彭兰塔,芬兰 2 奥尔堡大学规划系,9000 奥尔堡,丹麦 3 奥尔堡大学规划系,2450 哥本哈根,丹麦 4 斯坦福大学土木与环境工程系,斯坦福,CA 94305,美国 5 奥胡斯大学机械与生产工程系,8000 奥胡斯,丹麦 6 悉尼科技大学(UTS)可持续未来研究所,悉尼,新南威尔士州 2007,澳大利亚 7 德国航空航天中心(DLR),网络能源系统研究所,70563 斯图加特,德国 8 哥伦比亚大学地球与环境工程系生命周期分析中心,纽约,NY 10027,美国 9 牛津布鲁克斯大学工程、计算与数学学院,牛津 OX3 0BP,英国 10 Recognis Oy, 01530 万塔,芬兰 11 都柏林大学电气与电子工程学院,都柏林 4,D04 V1W8,爱尔兰 12 佛罗伦萨大学化学系,塞斯托佛罗伦萨,50019,意大利 13 埃因霍温理工大学机械工程系,5612 AZ 埃因霍温,荷兰 14 奥胡斯大学商业发展和技术系能源技术中心,8000 奥胡斯,丹麦 15 萨塞克斯大学商学院科学政策研究部(SPRU),布莱顿 BN1 9SN,英国 16 波士顿大学地球与环境系,波士顿,马萨诸塞州 02215,美国
1 卢森堡理工大学能源系统学院,53850 拉彭兰塔,芬兰 2 奥尔堡大学规划系,9000 奥尔堡,丹麦 3 奥尔堡大学规划系,2450 哥本哈根,丹麦 4 斯坦福大学土木与环境工程系,斯坦福,CA 94305,美国 5 奥胡斯大学机械与生产工程系,8000 奥胡斯,丹麦 6 悉尼科技大学(UTS)可持续未来研究所,悉尼,新南威尔士州 2007,澳大利亚 7 德国航空航天中心(DLR),网络能源系统研究所,70563 斯图加特,德国 8 哥伦比亚大学地球与环境工程系生命周期分析中心,纽约,NY 10027,美国 9 牛津布鲁克斯大学工程、计算与数学学院,牛津 OX3 0BP,英国 10 Recognis Oy, 01530 万塔,芬兰 11 都柏林大学电气与电子工程学院,都柏林 4,D04 V1W8,爱尔兰 12 佛罗伦萨大学化学系,塞斯托佛罗伦萨,50019,意大利 13 埃因霍温理工大学机械工程系,5612 AZ 埃因霍温,荷兰 14 奥胡斯大学商业发展和技术系能源技术中心,8000 奥胡斯,丹麦 15 萨塞克斯大学商学院科学政策研究部(SPRU),布莱顿 BN1 9SN,英国 16 波士顿大学地球与环境系,波士顿,马萨诸塞州 02215,美国
传感器融合的概念是为了在多传感器环境中实现最佳信息处理而开发的。传感器融合的一个范例是人类在品尝食物时的感知。人类通过眼睛、鼻子和舌头感知食物。来自所有传感器的信息有助于人类识别潜在的成分。传感器融合有几个动机,例如适应传感器的部分或全部故障以及导致不确定性的有限覆盖范围和精度。传感器融合使系统能够在某些传感器产生噪声信息时正确采取行动。传感器融合允许创建包含具有不同置信度的各种检测到的对象的内部地图。不同的传感器具有不同的分辨率和范围,并且它们覆盖不同的区域。因此,传感器融合带来了与准确定位、方向和态势感知相关的益处。
微VCM设施一旦暴露于真空,所有材料都会击败。超过味道在很大程度上取决于材料及其条件,工作温度以及在真空中所花费的时间。对于空间应用,超出气候可能会导致严重的问题,尤其是当一部分释放的气体凝结到相邻表面时。因此,在开发用于空间的硬件时,与挤压有关的所有材料的资格至关重要。这也适用于用于测试飞行硬件的真空设施中使用的材料,这可能会在实际任务开始之前导致污染。UHV(Ulta-High-vacuum)实验室包含用于调查材料和零件量过气以及污染风险的UHV-和M-VCM-ociality。