• 电阻温度检测器 (RTD) 几乎总是比热电偶 (TC) 更准确。只要测量的温度在 RTD 的范围内,当准确度很重要时,它们是更好的选择。• 热电偶具有更宽的温度范围,并且比 RTD 更耐用。• 对于经历破坏性振动和反复温度循环的粗糙服务应用,热电偶是一个不错的选择。• 高于环境温度时,干井校准器在温度升高时比在温度降低时更快地稳定温度。• 如果干井的稳定时间难以估计,请考虑在 754 上选择“手动测试”,并等待温度稳定后再记录测量值。• 带有 RTD 探头输入的 HART 智能变送器可能允许输入探头的认证常数。通过输入这些常数,传感器得到匹配,测量系统误差最小化。
机载激光扫描中的许多任务都需要建立相邻条带点数据之间的对应关系,或在点云和物体模型之间建立参考。这些任务可以通过将激光扫描仪数据(通常是不规则分布的 2 1 / 2 -D 点)插入到规则网格并应用标准摄影测量匹配技术来解决。相反,本文提出了一种基于三角不规则网络结构中的原始数据点的最小二乘匹配公式,从而避免了插值引起的降级效应。该技术确定所有三个坐标方向的偏移及其协方差矩阵。可以证明,在部分遮挡的情况下,将匹配技术应用于激光扫描仪数据会导致偏移参数出现较大的系统误差。基于 TIN 结构的所提出的公式允许进行多种扩展以解决此问题。
在美国雅基马河和三一河流域,我们收集了 220 公里的机载水深激光雷达数据。在收集航空数据的同时,我们还对两个流域的河床进行了地面勘测。我们从水深激光雷达调查在创建准确、精确和完整的河床地形以供数值建模和地貌评估方面的应用角度来评估其质量。测量误差是根据地面调查的幅度和空间变化来评估的。方差统计分析表明,在相似位置进行的两个独立地面调查的残差不是来自同一总体,这意味着不同研究地点的误差也来自不同的总体。系统误差表示数据中存在一致的偏差,随机误差在预期精度值范围内。2007 年由 John Wiley & Sons, Ltd. 出版。
作为快速地形特征提取的工具之一,随着更可靠、更准确的系统的开发,机载激光扫描 (ALS) 的商业用途在过去几年中得到了更广泛的认可 (Flood 1999、Flood 2001a、Flood 2001b)。虽然机载激光扫描系统已经取得了长足的进步,但针对特定应用的适当数据处理技术的选择仍在研究中。这里的资料处理被理解为半自动或自动,包括“系统误差建模”、“过滤”、“特征检测”和“细化”等任务。在上述任务中,人工分类(包括过滤)和质量控制是最大的挑战,估计耗费 60% 到 80% 的处理时间 (Flood 2001a),因此强调了在该领域进行研究的必要性。当考虑到许多应用需要区分裸露地面和其上的特征时,过滤的重要性就变得更加明显。
在快速 MRI 成像中,B 0 不均匀性会导致非线性图像失真(例如,对于 EPI)或图像模糊(例如,对于螺旋采集)。5 对于 CEST,B 0 不均匀性会引起频率偏移 6 ,这会导致量化中的系统误差。体内 MRI 检查对受试者的运动很敏感。那些具有长 MRI 序列或重复次数较多的 MRI 检查尤其容易受到受试者运动的影响。7,8 受试者位置的变化不仅经常通过 k 空间不同部分之间的不一致直接导致运动伪影,而且还会通过由位于磁化率差异很大的组织(例如脑组织、骨组织和空气)之间的磁化率界面处的源引起的局部场扰动的位置变化导致 B 0 场的均匀性降低而间接导致运动伪影。9,10
DLS 和 SLS 技术都基于仅检测到单次散射光的假设。然而,随着粒子浓度的增加,多次散射会增加并逐渐主导信号。这在 DLS 和 SLS 中都会引入无法检测的系统误差。无论重复测量多长时间或多少次,都无法消除或检测到此错误。为了解决这个问题,LS Instruments 开发了可选的 3D 互相关模块,可有效抑制多次散射。3D 互相关技术使用两束激光同时进行两次散射实验。虽然来自单次散射的贡献相同,但两次实验中的多次散射贡献不同。通过对信号进行互相关,可以抑制多次散射。3D LS 光谱仪是唯一为 DLS 和 SLS 提供 3D 互相关的仪器,为许多优秀的出版物提供了独特的数据。
本文介绍了如何对散射测量进行不确定性分析。概述了一种通过最小二乘回归传播不确定性的方法。该方法包括测量噪声的传播以及测量中系统效应的估计。由于测量确定的各种参数之间可能存在相关性,因此描述了一种可视化提取轮廓中不确定性的方法。分析针对 120 nm 间距光栅进行,该光栅由 120 nm 高、45 nm 临界尺寸和 88 ◦ 侧壁角的光刻胶线组成,使用光谱旋转补偿器椭偏仪测量。结果表明,虽然散射测量非常精确,但有许多系统误差源限制了其绝对精度。解决这些系统误差可能会显著改善未来的散射测量。
自校准技术已广泛应用于坐标计量学。在最发达的状态下,它们能够提取与测量仪器相关的所有系统误差行为,并确定被测工件的几何形状。然而,这通常是以引入额外参数为代价的,从而导致观测矩阵相当大。幸运的是,这些矩阵往往具有稀疏的块结构,其中非零元素被限制在小得多的子矩阵中。这种结构既可用于执行 QR 因式分解的直接方法,也可用于依赖于矩阵向量乘法的迭代算法。在本文中,我们描述了与坐标测量系统的高精度尺寸评估相关的自校准方法,重点介绍了如何紧凑地呈现和有效解决相关的优化问题。自校准技术导致的不确定性明显小于标准方法的预期。
在快速 MRI 成像中,B 0 不均匀性会导致非线性图像失真(例如,对于 EPI)或图像模糊(例如,对于螺旋采集)。5 对于 CEST,B 0 不均匀性会引起频率偏移 6 ,这会导致量化中的系统误差。体内 MRI 检查对受试者的运动很敏感。那些具有长 MRI 序列或重复次数较多的 MRI 检查尤其容易受到受试者运动的影响。7,8 受试者位置的变化不仅经常通过 k 空间不同部分之间的不一致直接导致运动伪影,而且还会通过由位于磁化率差异很大的组织(例如脑组织、骨组织和空气)之间的磁化率界面处的源引起的局部场扰动的位置变化导致 B 0 场的均匀性降低而间接导致运动伪影。9,10
在 NIPNE-HH 布哈拉斯特运行的 WILLI 电磁光谱仪装置已被改造,用于测量大气中 μ 子通量的电荷比。实验方法基于对负 μ 子在物质中停止时的有效寿命与正 μ 子的寿命相比的减少的观察。该方法给出了准确的结果,避免了磁谱仪的困难和系统误差,并且详细研究了技术程序,并通过开发紧凑而灵活的测量设备进行了演示。铝被用作最佳吸收材料,这是最大限度地缩短因核俘获而导致的寿命和通过延迟电子与停止 μ 子结合观察到的停止 μ 子率的折衷。本研究主要针对μ子的一个能量范围,为讨论所谓的大气中微子问题和研究大气中微子和反中微子通量提供了重要的信息。两个测量周期得到的结果是: