参考文献 • (1) Nessa A、Rahman SA、Hussain K。高胰岛素性低血糖症 - 分子机制。内分泌学前沿。2016;7:29。doi:10.3389/fendo.2016.00029。 (2) Ran FA、Hsu PD、Wright J、Agarwala V、Scott DA、Zhang F。使用 CRISPR-Cas9 系统进行基因组工程。自然协议。2013;8(11):2281-2308。doi:10.1038/nprot.2013.143。 (3) Guo D、Liu H、Ruzi A 等人。使用 CRISPR/Cas9 产生的 ABCC8 缺陷型人类胚胎干细胞模拟先天性高胰岛素症。科学报告。 2017;7:3156。doi:10.1038/s41598-017-03349-w。(4)Nessa A、Rahman SA、Hussain K。先天性高胰岛素血症的分子机制和潜在治疗靶点。孤儿药专家意见。2015;3:8。doi.org/10.1517/21678707.2015.1064819。(5)AP Chandrasekaran、M. Song、KS Kim、S. Ramakrishna。将 CRISPR/Cas9 递送到细胞中的不同方法。Prog Mol Biol Transl Sci,159(2018),第 157-176 页。
• Fabp5 mediates lipid metabolism to drive microglia phenotype transition and neuroinflammation following stroke Yan Li • Senescent microglia conserved in aging and Alzheimer's disease exhibit elevated TREM2 protein levels Noa Rachmian • SorLA limits inflammatory properties of microglia during glioma progression Paulina Kaminska • Galectin-3 role in the小胶质细胞和淀粉样蛋白β的相互作用•小胶质细胞的多色命运图显示了缺血性中风后克隆膨胀,异质性和细胞 - 细胞相互作用。Majed Kikhia•纤维淀粉样蛋白-Beta诱导细胞应激,并改变小胶质细胞中的蛋白质降解Alison Carlisle•一种体外平台,通过与毒素性雌雄同体的血管构成血管化的脑巨噬细胞来产生人脑巨噬细胞。Amin Yarmand•神经胶质瘤中的小胶质细胞动力学:一种鉴定与疾病相关的小胶质细胞Jiawen Qian的命运映射方法•通过CSF1R操纵单核吞噬系统,以了解内源机制和增强后创伤和增强。
NR2E3 编码一个孤儿核受体,该受体在光感受器中起转录激活剂和抑制剂的双重功能,是视锥细胞命运抑制以及视杆细胞分化和体内平衡所必需的。该基因突变会导致色素性视网膜炎 (RP)、增强型 S 视锥综合征 (ESCS) 和 Goldmann-Favre 综合征 (GFS)。据报道,一种 Nr2e3 异构体包含所有 8 个外显子,第二种 — 以前未报道 — 较短的异构体仅跨越前 7 个外显子,其功能仍然未知。在这篇数据文章中,我们通过使用 CRISPR/Cas9-D10A 切口酶靶向 Nr2e3 的外显子 8 设计并生成了两种新型小鼠模型,以剖析这两种异构体在 Nr2e3 功能中的作用并阐明 NR2E3 突变引起的不同疾病机制。这种策略产生了几个经过修饰的等位基因,改变了最后一个外显子的编码序列,从而影响了转录因子的功能域。等位基因 27 是 27 bp 的框内缺失,消除了二聚化域,而等位基因 E8(外显子 8 的完全缺失)只产生了缺乏二聚化和抑制域的短同种型。两者的形态和功能改变
干眼症 (DED) 是一种多因素疾病,常表现为眼部不适、视觉障碍和泪膜不稳定等症状。还可能会损伤眼表。1 由于 DED 具有多因素性,因此对临床医生的诊断具有挑战性。它与多种潜在致病因素和非特异性症状有关。有些患者甚至可能没有症状。然而,无论症状如何,识别和治疗都很重要,因为如果不及时治疗,该疾病会导致眼表损伤、杯状细胞丢失和粘蛋白表达紊乱,最终导致炎症介质释放到泪液中。1 泪液渗透压和泪液不稳定是公认的 DED 主要机制。特别是,高于稳态范围的泪液渗透压水平被认为是驱动免疫病理级联的致病因素。测量泪液渗透压已成为客观定量识别 DED 并监测其进展和治疗反应的重要临床工具。近年来,市场上出现了 2 种采用新技术的设备,可简化泪液渗透压的现场测量。这些设备正在取代蒸气压渗透计,后者虽然可以提供准确、特定和灵敏的测量结果,但也需要大量时间和多个步骤才能获得读数。多步骤过程增加了
尽管进行了广泛的文献综述,但2-4综合征对此很了解。尤其是视觉萎缩的自然史,其病理学位和发病机理尚不清楚。在Wolfram的最初描述中,两个长老分别在6和8年时表现不佳,10年后进行检查时,敏锐度减少到手指的计数。该综合征的病例报告所包含的患者太少,无法进行概括。文献综述尚未阐明视际萎缩是否是正常视力时期或始终是渐进的,如果是的,则在什么时间段内。在视觉途径中的病理部位上存在混乱:在一系列7例患者中,发现1例患有色素性视网膜营养不良。5后来对19例患者的电图(ERG)发现的综述得出结论,视觉障碍主要是由于神经节细胞和神经纤维层的病变。6例进一步的患者患有正常的ERG,但视觉异常引起的电位,表明视网膜不参与发病机理?对一名患者的一项验尸研究表明,视神经,chiasm,chiasm,束和辐射的萎缩,严重的轴突破坏和脱髓鞘,以及上丘的数量减少的神经细胞和横向遗传体的数量减少。8
用于猪肉生产的公猪通常会接受手术阉割,以防止产生膻味并减少雄激素驱动的行为(例如攻击性和爬跨),因为这些行为会增加受伤风险 (Rault 等人,2011)。膻味是一种在完整公猪的肉中发现的异味和强烈味道,消费者认为这是不可接受的。手术阉割是一个福利问题,因为它被认为是痛苦的,并且有效的镇痛方法基本上不可用 (Rault 等人,2011)。这种管理程序的一些替代方法已在市场上可买到,例如针对促性腺激素释放激素 (GnRH) 的免疫 (Dunshea 等人,2001),但也存在许多限制其使用的限制 (Bonneau 和 Weiler,2019 年;Squires 等人,2020 年);并且消除阉割的目标已被证明是不可行的( Backus 等人,2018 年)。我们寻求一种遗传机制来避免手术阉割的需要。编辑基因来阻止性成熟是一种有前途的方法,因为预计仍处于青春期前的公猪不会产生公猪异味和攻击性行为。我们选择了 kisspeptin 系统,因为它在启动哺乳动物青春期方面具有保守作用( Lents,2019 年;Uenoyama 等人,2019 年;Sobrino 等人,2022 年)。Kisspeptin 是由高度保守的 KISS1 基因编码的肽,可刺激 GnRH 的释放和促性腺激素的分泌( Lents,2019 年)。 kisspeptin 受体基因 (KISS1R) 突变会导致人类促性腺激素性性腺功能减退症 (HH) 和性成熟不足 (de Roux 等人,2003 年;Seminara 等人,2003 年;Semple 等人,2005 年)。同样,在实验室啮齿动物中敲除 Kiss1 (d'Anglemont 等人,2007 年;Lapatto 等人,2007 年;Uenoyama 等人,2015 年;Ikegami 等人,2020 年) 或 Kiss1r (Funes 等人,2003 年;Seminara 等人,2003 年;Lapatto 等人,2007 年) 基因会导致青春期失败和因 HH 引起的不孕。 Sonstegard 等人 (2016) 、Sonstegard 等人 (2017) 也在猪中诱发了促性腺激素性性腺功能低下症,他们使用 TALEN 敲除猪的 KISS1R,开发出第一个受损 kisspeptin 系统大型动物模型 ( Tan et al., 2013 ),证明 kisspeptin 信号传导对于公猪的性成熟至关重要。具有受损 KISS1/KISS1R 基因的人、小鼠和猪对外源性 GnRH、促性腺激素 ( Seminara 等人,2003 年;Sonstegard 等人,2017 年) 或 kisspeptin 类似物 ( d ' Anglemont 等人,2007 年;Lapatto 等人,2007 年) 有反应,尽管其中一些方法仅部分逆转了公猪的 KISS1R KO 表型 ( Sonstegard 等人,2017 年)。我们假设 KISS1 KO 猪将是 KISS1R KO 猪的表型复制品,因为
不利事件获得了Calmette和Guerin社区咨询委员会的免疫缺陷综合征抗原抗原抗原细胞杆菌的基于社区的组织疾病控制与预防差异化中心的组织集群,用于流行病的冠状病毒创新冠心病毒疾病2019年循环的循环委员药物管理良好的临床实验室实践良好的临床实践良好的人类免疫缺陷病毒国际委员会在人类使用的技术要求协调人类使用的技术要求独立伦理委员会干扰素伽玛释放释放测定法机构审查委员会LASSA病毒低至中等收入国家潜在的结核病,潜在的结核病,可潜在的结核病,抗腐蚀性抗药性抗抑制剂抗体抗体抗体抗体,核蛋白国家监管机构预防预防疾病预防预防感染预防恢复核糖核酸严重不良事件南非卫生产品调节性机关肺结核目标产物概况性结核蛋白皮肤测试联合国艾滋病毒/艾滋病疫苗疫苗疫苗疫苗疫苗疫苗疫苗的疫苗 - 血清毒素 - 血清毒素 - 血清毒素性促进性男性疾病范围内的医疗保健性
继承和与年龄相关的视网膜变性是大量异质疾病的标志,是当今无法治疗的失明的主要原因。遗传因素在视网膜DE世代中起着主要的致病作用,用于单基因疾病(例如色素性视网膜炎)和具有已建立的遗传危险因素(例如与年龄相关的黄斑变性)的复杂疾病。基因分型技术和眼睛成像背面的进展正在完成我们对这些疾病的理解及其在患有视网膜变性的患者流行病中的表现。很明显,无论遗传原因,视网膜疾病中的大多数视力丧失是由于光感受器功能的丧失而导致的。围绕光感受器功能丧失的时间和情况决定了每个患者使用的适当治疗方法。在这种方法中,基因治疗正迅速成为适用于诊所的治疗现实。我们从实验室工作到临床应用的巨大转变是由于我们在疾病遗传和机制,基因递送载体,基因编辑系统以及光感受器功能丧失的补偿策略中所取得的进步。在这里,我们根据患有遗传性视网膜退化的患者人群的需求提供了视网膜基因疗法现有方式及其相关性的概述。
基因疗法一直是过去十年中研究最多的主题之一。现在已成为现代医学的革命性治疗工具。基因治疗是宿主细胞中疾病过程中涉及的有缺陷基因的改变。它通过改良的病毒或非病毒载体提供治疗性遗传信息。眼基因疗法尤其是在治疗遗传性视网膜疾病方面的进展,因为眼睛是基因治疗发育的有利器官。眼睛作为基因疗法的靶标的优势归因于其易于可及性和血液屏障。正在进行的几项临床试验正在研究其他眼部疾病的各种基因疗法,包括新血管相关的黄斑变性,色素性视网膜炎(RP),Usher综合征,青光眼等。然而,存在诸如眼部炎症和体液反应,病毒载体感染和插入诱变之类的挑战。这些局限性取决于几个因素;无论使用病毒载体还是非病毒载体,使用了病毒载体,玻璃体下,玻璃体内或胸膜上的给药途径,以及向量的剂量和目标组织。这些并发症可能导致因眼内炎症引起的治疗衰竭和视力丧失。本综述旨在总结有关眼基因疗法的现有知识以及我们面临的相关局限性,特别关注了一些正在进行的临床试验。
大自然是科学家取之不尽的灵感源泉。仿生方法的发展目标是重现生物体所表现出的特定特征,以实现目标功能。合成生物学从生物系统中汲取灵感,目的是重新设计它们,甚至构想出具有特定能力的新型人工生物系统。这种自下而上的方法导致了人工细胞和组织的制造 1-4 。这种方法不仅有利于开发有前景的生物医学或制药应用,而且对基础研究也很有价值。人工细胞的操作适用于研究细胞特性或细胞机制,由于其固有的复杂性或多因素性 5-7 ,使用活细胞来解决这些问题具有挑战性。在这种背景下,人们开发出了多种简化的仿生人工细胞,其复杂程度降低。虽然这些细胞模型在结构上可以多种多样(液滴、凝聚层、脂质体、聚合物囊泡 1,8 ),但巨型单层囊泡 (GUV) 是最相关的仿生原型之一 9 。GUV 由磷脂半透性双层构成。生化膜成分可以通过使用特定的脂质混合物和加入膜蛋白来随意丰富。然而,GUV 是还原论的细胞模型,因为它们是被动物体,不能主动移动、交换,也不能表现出机械转导机制、繁殖或死亡。囊泡是软物体,其膜弯曲模量约为