图 1 EMT 过程中的细胞事件。正常情况下,上皮细胞以单细胞层或多层形式存在,并通过特殊的细胞间连接相互通讯,包括桥粒、亚顶端紧密连接、黏附连接和分散的间隙连接。一旦上皮细胞受损,上皮细胞 - 细胞连接就会溶解,上皮细胞失去顶端 - 基底极性并获得前后极性。此外,细胞骨架结构会重组,E-钙粘蛋白的表达被 N-钙粘蛋白的表达取代,这有助于细胞运动和侵袭性。然后,基底膜会溶解。在胚胎发生过程中,上皮和间充质细胞通过 EMT 和 MET 相互转化,这种转化被称为 I 型 EMT,对胚胎发育和器官形成至关重要。在 II 型 EMT 中,间充质样细胞随后转化为肌成纤维细胞,产生过量胶原蛋白,导致纤维化。在 III 型 EMT 中,间充质样细胞随循环系统迁移到次要位置,迁移细胞通过 MET 形成继发性肿瘤。绿色方格表示三种 EMT 类型中的共同过程,可以针对该过程治疗纤维化和肿瘤。EMT,上皮间充质转化;MET,间充质上皮转化 [彩色图可在 wileyonlinelibrary.com 上查看]
应用于现实世界分析和控制应用程序(例如机电系统系统(Abraham和Murphey,2019年),(Cisneros等,2020),分布式参数系统(Klus等,2020))。为了实际使用,需要选择有限数量的可观察到的物品,这称为举重。基于这些,构建了时间变化的数据矩阵,以通过最小二乘矩阵近似Koopman运算符计算。该技术被称为Excended动态模式分解(EDMD)(Williams等,2015)。但是,主要问题是可观察物的选择是启发式的,并且无法保证所得模型的质量。为了解决这个问题,一种解决方案是使用数据驱动的技术从数据中学习提升,以规避可观察物的手动选择(Lusch等,2018)(Iacob等,2021)。尽管如此,这仍然是一个近似值,并且有关如何将非线性系统嵌入精确的线性有限尺寸提升表示的问题,并且在可能的情况下,仍然可以打开。这是一个重要的算法,因为出于控制目的,具有确切的有限尺寸嵌入允许将可用的控制工具应用于线性系统。此外,如果模型中存在无法量化的近似错误,则将无法实现预期的性能。为了解决这个问题,已经尝试将Koopman框架与沉浸式(Wang and Jungers,2020)和Carleman线性化连接起来,以获得清晰的计算观测值的方式。紧密连接到然而,在沉浸式方法中,有限的维度完全线性提升的存在很大程度上取决于系统的可观察性特性,并且通常,所得的填充物包含非线性输出注入(Krener和Isidori,1983),(Jouan,2003年)。
上皮可塑性,上皮细胞改变表型的能力,是一种令人着迷的现象,已被广泛研究了数十年。最常见的上皮可塑性是指上皮和间质表型之间的转化,称为上皮to-to-Emespoodymal Transition(EMT)和间质向上皮到上皮过渡(MET)。EMT和MET都是胚胎发育,组织对损伤的反应,例如炎症,修复和癌症的常见特征。收集了一系列原始研究文章和研究报告,以解决人类和其他模型系统中上皮可塑性,其区分和功能的迷人和复杂状态。上皮到间充质转变(EMT)已经过经典定义为一种发育程序,它在许多器官的早期胚胎图案中发挥了作用,其特征是上皮细胞失去细胞对细胞粘附,上皮紧密连接点和向脉炎。进化上,EMT过程使生物可以通过从原始外胚层产生中胚层的间充质细胞来获取更多复杂的结构。EMT是组织和器官的生理修复和病理纤维化的基本过程。最近,人们已经认识到,EMT在促进促肿瘤微环境的创造方面也起着至关重要的作用,从而促进肿瘤发生和转移。细胞间连接(尤其是紧密连接)的重组是肿瘤进展过程中EMT过程的关键事件。在本期内Neyrinck-Leglantier等。发表了他们的研究工作,调查了紧密的连接蛋白齐路coccludens-1(ZO-1)如何参与调节肿瘤微环境。使用体外和体内模型都证明,将膜相关的ZO-1迁移到细胞核区室可以调节促炎性趋上趋化因子的分泌,因此
摘要。紧密连接(TJ)是细胞连接的重要组成部分;它们保持细胞极性,渗透性和粘附,并参与细胞增殖和分化的调节。Claudin(CLDN)家族是TJ不可或缺的一部分,Cldn6是该家族的重要成员。CLDN6的异常表达可以通过各种机制破坏TJ的完整性,并且可以在肿瘤的发生和发育中起多种作用。 cldn6在各种肿瘤中广泛表达,但在健康的成年组织中很少表达。 本综述的目的是批判性地检查有关CLDN6的最新文献,包括其结构,不同肿瘤中的表达,调节机制和治疗前景。 尽管某些结论是有争议的,但在某些肿瘤中,例如肝脏,卵巢,子宫内膜和食管癌,以及非典型的致畸形/牙龈肿瘤,但研究始终表明CLDN6在肿瘤组织中表达,但在周围组织中不表达或在低水平的组织中表达。 在这些肿瘤中,CLDN6具有癌胚抗原和治疗靶标的潜力。CLDN6的异常表达可以通过各种机制破坏TJ的完整性,并且可以在肿瘤的发生和发育中起多种作用。cldn6在各种肿瘤中广泛表达,但在健康的成年组织中很少表达。本综述的目的是批判性地检查有关CLDN6的最新文献,包括其结构,不同肿瘤中的表达,调节机制和治疗前景。尽管某些结论是有争议的,但在某些肿瘤中,例如肝脏,卵巢,子宫内膜和食管癌,以及非典型的致畸形/牙龈肿瘤,但研究始终表明CLDN6在肿瘤组织中表达,但在周围组织中不表达或在低水平的组织中表达。在这些肿瘤中,CLDN6具有癌胚抗原和治疗靶标的潜力。
自1990年以来就已经知道[IL89,GOL90],几乎所有有趣的经典加密任务都需要计算安全性,此外,硬度假设至少与单向函数的存在一样强。因此,这些密码任务无条件地面对“𝖯=𝖭𝖯”,通过复杂性理论家进行了强烈的研究这些密码任务特别包括构建承诺方案,其可行性等效于单向函数的存在。自1990年代以来[OW93]自1990年代以来所研究的辅助输入密码学是一个非均匀版本的加密版,协议中的每个方可以访问某些可能无法有效准备的公共信息的副本。这不是与非统一安全性混淆,这是默认的安全性概念,除了在多项式时间内运行,对手在开始时从其他协议执行中从效率低下的预处理阶段或一些残留信息中获取一些建议。遵循相同的证据,相同的障碍是“𝖯?=𝖭𝖯”仍然适用于这种更轻松的设置考虑到这个困难,自然要考虑构建量子承诺。最近的作品表明,就其与量子加密的紧密连接而言,量子承诺与经典作用相似,在大[yan22,bcq23,bcq23,bem + 23]和量子复杂性[BEM + 23]方面与量子密码的紧密联系起来。尽管如此,仍然有理由推测任何合理的量子计算密码学都可能面临其他障碍。虽然从统计上(理论上)对双方的承诺也是不可能的,甚至是量子上的[May97,LC97],但最近的作品表明,在复杂性假设[BCQ23,BEM + 23,BRA23]下,计算安全性的可能是可能的,显然比较温和的是较温和的。 LMW23]。这条工作表明,实现计算安全的量子密码学可能不容易受到适用于经典加密术的相同障碍的影响。的确,所有先前的量子计算密码
背景。溃疡性结肠炎(UC)是一种患有病因未知的自身免疫性疾病,一直困扰着人类的身心健康。黄麻氨酸(JAT)是一种从Coptis Chinensis分离出来的天然异喹啉生物碱,已被证明具有抗菌,抗炎性和抗肿瘤的影响。目的。te目的是探索JAT对DSS诱导的UC的治疗效果和作用机理。研究设计。TE UC小鼠模型在饮用水中由3%DSS诱导。te小鼠10天。方法。分析了体重,结肠长度,脾脏湿重指数,疾病活动指数(DAI),结肠组织病理学和血清组织和结肠组织的炎症因子的变化,以评估结肠炎小鼠的严重程度。te结肠粘液分泌能力。此外,检测到检测到蛋白质表达,例如TLR4,MyD88,P-NF-κB-P65,NF-κB-P65,COX-2,ZO-1和occludin,以阐明在DSS诱导的Colisis模型上JAT的分子机制。结果。te结果表明,JAT可以显着减轻症状,结肠缩短,脾脏指数和组织学损害,并恢复DSS诱导的结肠炎小鼠的体重。JAT还抑制了炎性细胞因子的水平,并上调了抗炎性细胞因子的水平。此外,JAT通过上调结肠紧密连接(TJ)蛋白的水平并增强了杯状细胞产生的粘蛋白的分泌来修复肠屏障功能。此外,JAT可以显着抑制TLR4,MyD88,P – NF –κB-P65/NF-κB-P65和COX-2在结肠组织中的表达。结论。te结果表明,JAT通过调节肠道屏障功能并抑制TLR4/MYD88/NF-κB信号传导途径在DSS诱导的结肠炎中起保护作用。TIS研究第一次研究证明了JAT对UC的治疗和保护作用。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
通过激活神经胶质细胞和神经元损伤而引起的神经血管单元 (NVU) 炎症在神经退行性疾病中起着关键作用。虽然疾病发病的确切机制尚不明确,但某些生物标志物为了解疾病的发病机制、严重程度、进展和治疗效果提供了宝贵的见解。这些标志物可用于评估脑细胞的病理生理状态,包括神经元、星形胶质细胞、小胶质细胞、少突胶质细胞、特化微血管内皮细胞、周细胞、NVU 和血脑屏障 (BBB) 破坏。BBB 的紧密连接 (TJ)、粘附连接 (AdJ) 和间隙连接 (GJ) 成分的损伤或错位会导致包括神经退行性疾病在内的各种脑部疾病的通透性和神经炎症增加。因此,可以评估血液、脑脊液 (CSF) 或脑组织中的神经炎症标志物,以确定神经系统疾病的严重程度、进展和治疗反应。慢性炎症在与年龄相关的神经退行性疾病中很常见,包括阿尔茨海默病 (AD)、帕金森病 (PD) 和痴呆症。神经创伤/创伤性脑损伤 (TBI) 也会导致急性和慢性神经炎症反应。一些标志物的表达也可能在神经退行性疾病发作前很多年甚至几十年发生改变。在这篇综述中,我们讨论了与急性和慢性脑部疾病相关的神经炎症和神经退行性疾病的标志物,尤其是与神经血管病变相关的标志物。这些生物标志物可以在脑脊液或脑组织中进行评估。神经丝轻链 (NfL)、泛素 C 末端水解酶-L1 (UCHL1)、神经胶质纤维酸性蛋白 (GFAP)、离子钙结合衔接分子 1 (Iba-1)、跨膜蛋白 119 (TMEM119)、水通道蛋白、内皮素-1 和血小板衍生生长因子受体 β (PDGFR β ) 是一些重要的神经炎症标志物。最近的 BBB 芯片建模提供了有希望的
课程目标:细胞生物学课程提供了对细胞细胞器和组件的结构和功能的基本理解,以及细胞与其微环境单元I-I:细胞结构和功能的功能相互作用:细胞大小和形状的多样性;细胞理论;原核细胞和真核细胞的结构;细胞细胞器及其组织,细胞内室内化 - 肾上腺素 - 类型和功能,过氧化物酶体,内体和溶酶体的结构和功能,线粒体的结构功能和叶绿体;细胞外基质,微生物中细胞壁的结构和功能。UNIT-II: PLASMA MEMBRANE STRUCTURE AND FUNCTION: Chemical composition and molecular arrangement (lipid bilayer, membrane proteins and carbohydrates), models of membranes (fluid mosaic)., Membrane Transport: Active and passive transport of ions, Na+/K+ pump, ATPase pumps, Co-transport, Symport, Antiport, Endo cytosis and Exocytosis.单位-III:细胞相互作用和细胞骨架:细胞粘附分子:钙粘蛋白,类似于分子的免疫球蛋白,整联蛋白和Selectins。细胞连接:紧密连接,脱骨体,半底体和间隙连接。微管,微丝及其动力学。Centrosome,Cilia,Flagella。有丝分裂仪和染色体的运动。单位IV:细胞周期和检查点和癌症:细胞周期 - 细胞周期,相间,有丝分裂,减数分裂和细胞因子的细胞周期控制和检查点的各个阶段,细胞周期中断;癌症;类型和阶段。肿瘤抑制基因和原子基因。癌症的分子基础。wnt,jak-stat途径。单位V:细胞信号传导,凋亡和坏死:概述,胞质,核和膜结合受体,次级使者的概念,CAMP,CGMP,CGMP,蛋白质激酶,G蛋白,信号传输机制。衰老,坏死分类,坏死的形态模式,坏死原因,凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症细胞凋亡的凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症的凋亡。
生成功能多能细胞衍生的脑内皮细胞,用于在脑内皮细胞(BECS)中高度专业的内皮细胞(ECS)进行体外建模和血液脑屏障的体外建模,与其他各种细胞类型相互作用,例如星形胶质细胞和诸如血液脑障碍(BBB)的基础(BBB)。BEC具有独特的特性,包括紧密连接,选择性渗透性和特定的运输系统,这些特性将它们与其他组织中的内皮细胞区分开。这些细胞在维持稳态大脑功能以及调节免疫系统和神经系统之间的相互作用方面起着至关重要的作用。人类神经血管单元(NVU)的体外模型的发展取决于使用EC的使用,该模型可以忠实地概括多个关键的器官功能。人类多能干细胞(HPSC) - 衍生的BMEC(IBMEC)已被广泛用于此目的;然而,其细胞身份的转录组和功能表征表明,这些细胞是上皮屏障形成细胞(Epi-IBFC)而不是BMEC。在这里,我们描述了转录因子介导的策略的开发,以从HPSC中产生EC及其用于生成3D NVU模型的使用。我们报告说,两个EC转录因子SOX7和ERG的构型过表达将Epi-iBFC转换为成人血管ECS(SE-REC),表达EC基因曲目并响应炎症提示。此外,在2D和3D中与星形胶质细胞和周细胞的共同文化在SE-REC中诱导BBB特异性的转录谱。在功能上,与单独培养的EC相比,在3D微流体系统中与原发性脑周细胞和星形胶质细胞的共同培养可显着降低对生物蛋白的渗透性,而70 kDa葡萄蛋白的渗透性与单独培养的EC相比,主要是由于诱导的紧密连接蛋白Claudin-5和Beceception concection claudin-5 and beccantion centection beccention begencecnecnection-beccection centectection-becceent centection beccente cenecnectection。我们旨在使用这些重编程的SE-REC在体外开发更忠实的人BBB系统,以了解疾病机制并开发用于向大脑输送药物的方法。