背景:在当代医疗保健领域,实验室测试是推动精准医疗进步的基石。这些测试提供了对各种医疗状况的深入见解,从而促进了诊断、预后和治疗。然而,某些测试的可及性受到诸如高成本、专业人员短缺或地理差异等因素的阻碍,这对实现公平的医疗保健构成了障碍。例如,超声心动图是一种极其重要且不易获得的实验室测试。对超声心动图的需求不断增加,凸显了更高效的调度协议的必要性。尽管有这种迫切的需求,但在这一领域的研究却有限。目标:本研究旨在开发一种可解释的机器学习模型,以确定需要超声心动图检查的患者的紧急程度,从而帮助确定调度程序的优先级。此外,本研究旨在利用机器学习模型的高可解释性,深入了解影响超声心动图预约优先级的关键属性。方法:基于来自电子健康记录的大量现实世界超声心动图预约数据集(即 34,293 个预约),进行了实证和预测分析以评估患者的紧急程度,该数据集包含管理信息、转诊诊断和潜在患者状况。我们使用了一种最先进的可解释机器学习算法,即最佳稀疏决策树 (OSDT),该算法以高准确性和可解释性而闻名,来研究与超声心动图预约相关的属性。结果:与表现最佳的基线模型相比,该方法表现出令人满意的性能(F 1 -score=36.18%,提高了 1.7% 和 F 2 -score=28.18%,比表现最佳的基线模型提高了 0.79%)。此外,由于其高度可解释性,结果为通过从 OSDT 模型中提取决策规则来识别紧急患者进行测试提供了宝贵的医学见解。结论:该方法表现出了最先进的预测性能,证实了其有效性。此外,我们通过将 OSDT 模型得出的决策规则与既定的医学知识进行比较来验证这些决策规则。这些可解释的结果(例如 OSDT 模型中的属性重要性和决策规则)强调了我们的方法在优先考虑患者紧急程度的超声心动图预约方面的潜力,并且可以扩展到使用电子健康记录数据优先考虑其他实验室测试预约。