先前已从皮肤活检中收获了原代真皮犬成纤维细胞。使用人类端粒酶逆转录酶 (hTERT) 对真皮犬成纤维细胞进行永生化,以从每个供体 (PDK4 野生型或 wt/wt、PDK4 杂合子或 wt/del、PDK4 纯合子或 del/del) 中创建永生化细胞系。这些细胞将在含有 10% 胎牛血清和 1% 抗生素抗真菌剂的 Dulbecco 改良 Eagle 培养基的 6 孔板中接种和培养。将使用 QuickExtractTM DNA 提取溶液提取 DNA。将使用 Thermo Scientific NanoDropTM 1000 分光光度计对 DNA 进行分光光度定量。提取 DNA 后,将对 PDK4wt/wt 和 PDK4del/del 细胞中的 PDK4 基因进行 PCR 扩增。扩增后,将使用 DNA Clean & Concentrator™-25 试剂盒纯化 PCR 产物以进行裸 DNA 切割反应。兽医学学生将测试一种名为 KKH 的新酶,它是 Cas9 变体,可在不同的 PAM 或识别位点切割 DNA。我们使用计算方法确定 KKH 将在 PDK4 基因中所需的切割位点切割,从而有效地为插入双链寡脱氧核苷酸 (dsODN) 探针腾出空间。该 DNA 片段将通过同源重组将缺失的 16 个碱基对添加到基因中。已经设计了两个 dsODN,它们包含“丢失的外显子”序列以及与 DCM1 相关的缺失的 16 个碱基对,并将通过核转染反应测试它们是否掺入细胞 DNA 中。dsODN1 由 DCM1 突变两侧的 300 个碱基组成,dsODN2 由突变两侧的 350 个碱基组成。正向和反向引物组将由 Integrated DNA Technologies(IDT,美国爱荷华州科勒尔维尔)合成。将对每个引物组进行 PCR 梯度,退火范围为 dsODN1 的 55°C 至 67°C 和 dsODN2 的 54°C 至 64°C。目标是将缺失的 PDK4 片段插入切割的 DNA 中,并将在体内缺失 16 个碱基对的成纤维细胞中使用核转染试验进行测试。此后,将从细胞中提取 DNA 并评估整合效果。
在人类和其他灵长类动物中,由于BDNF基因在巨核细胞中的表达,血小板含有高浓度的脑源性神经营养因子。相比之下,通常用于研究中枢神经系统病变的影响的小鼠在血小板中没有明显水平的脑衍生的神经营养因子,并且它们的巨核细胞没有大量的bdnf基因。在这里,我们使用两种良好的CNS病变模型探索了血小板脑源性神经营养因子的潜在贡献,并使用“人源化”小鼠在巨核细胞特异性启动子的控制下使用“人性化”小鼠进行表达BDNF基因。使用二元术和通过sholl分析后评估的视网膜神经节细胞的树突状细胞的树状完整性标记了由含有脑源性神经营养因子的小鼠制备的视网膜外植体。将结果与野生型动物的视网膜以及补充饱和浓度的脑源性神经营养因子或tropomyosin激酶B抗体激动剂ZEB85的野生型外植体进行了比较。还进行了视神经张力,视网膜神经节细胞的树突在伤害后7天评估,将血小板中含有脑源性神经营养因子的小鼠与野生型动物进行了比较。在含有脑源性神经营养因子的小鼠中,纯合子的平均血清脑源性神经营养因子水平为25.74±11.36 ng/ml,17.02±6.44 ng/ml的杂氮小鼠,近乎杂合小鼠,接近原始的小鼠。基于细胞计数的视网膜神经节细胞存活在所有四组中均相似,显示约15%的损失。表现出强大的树突复杂性保存,类似于与补充脑衍生的神经营养因子或真霉素受体激酶B抗体抗体抗体激动剂的培养基孵育的野生型外植体,Zeb85。曲线下的sholl区域为1811±258、1776±435和1763±256,而野生型对照组中的Sholl区域为1406±315(p≤0.001)。在评估反式基因小鼠中视网膜神经节细胞的树突时,还观察到了一种强大的神经保护作用,与野生型相比,弯曲曲线下的视网膜神经节细胞的树突明显更高(2667±690和1921±392,p = 0.026),并且在无显着差异中,并且是无显着差异的。重复实验发现细胞存活没有差异,两者均显示约50%的损失。这些结果表明,血小板脑衍生的神经营养因子对视网膜神经节细胞的树突复杂性具有强大的神经保护作用,在体内和体内模型中,这表明血小板脑源性的神经营养因子可能是灵长类动物的重要神经保护因子。
