技术是社会的基础,这是不言而喻的 [ref. 2]。在过去的几十年里,人类发明、开发和部署了种类繁多且不断增加的革命性和颠覆性技术。有人提出 [ref. 3],我们是技术人,目前的状况就像“狂野西部”。这些技术正在改变人类社会,并日益改变人类自身,它们被归入信息技术 (IT)、生物、纳米、量子和能量学等大类,其中互联网是迄今为止对人类社会影响最大的典型 [ref. 4]。这些技术革命始于 20 世纪 50 年代固态电子学的发展,随后是 20 世纪 60 年代的生物革命,包括 DNA 和基因组学。纳米革命始于 20 世纪 90 年代自形成纳米管,量子技术和能量学则持续到 21 世纪。这些技术都具有潜在的重大有利和不利影响。世界已经经历过这样的情况,化石燃料为工业时代提供了动力,但却导致了日益恶劣的气候变化。
摘要 关于碳纳米管-硅 MIS 异质结构的新研究表明,可利用器件绝缘层中厚度的不均匀性来增强其功能。在这项工作中,我们报告了一种器件的制造和特性,该器件由 n 型硅衬底上的单壁碳纳米管 (SWCNT) 薄膜组成,其中纳米管和硅之间的氮化物中间层已被刻蚀以获得不同的厚度。三种不同的氮化硅厚度允许在同一器件内部形成三个区域,每个区域都有不同的光电流和响应度行为。我们表明,通过选择特定的偏置,可以打开和关闭区域的光响应。这种特殊行为使该器件可用作具有电压相关活性表面的光电探测器。在不同偏置下对器件表面进行的扫描光响应成像突显了这种行为。
图 1 . (a) 3D 打印钛合金全膝关节置换术修复近端胫骨。[15] (b) 3D 打印患者匹配的 Ti6Al4V 脊柱笼。[16] (c) 3D 打印合金设计。Ti-Ta 合金具有固有微孔隙度和纳米级表面孔隙度,这是通过生长的二氧化钛纳米管实现的。[20] (d) 对 Spurr 嵌入的大鼠股骨外植体的 300µm 薄切片进行组织学评估,结果显示 5 周时 10Ta-P-NT 和 25Ta-P-NT 中均有早期类骨质形成。类骨质的存在通过改良 Masson Goldner 染色的红色标记。在 TNT-P(对照)中观察到沿骨-植入物界面的不均匀类骨质形成。比例尺为 200µm。[20]
硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
石墨烯是一种由单层碳原子组成的二维蜂窝状晶格。它是各种尺寸石墨材料的基础,包括富勒烯、纳米管和石墨。过去 60 年来,人们对石墨烯进行了理论研究 [ 2 ]。该材料的独特性质包括较大的比表面积(~ 2600 m 2 /g)、较高的电子迁移率(200,000 cm2/Vs)、较高的热导率(3000-5000 Wm/K)、极高的光学透明度(97.4%)和出色的机械强度(杨氏模量为 1 TPa)[ 3 ]。石墨烯出色的电子迁移率使其非常适合需要快速响应率的半导体器件。其优异的导电性和高光学透明度使其可用作光子器件中的透明导电层。此外,石墨烯在防腐涂层、传感器技术、可穿戴电子产品、柔性显示器、太阳能发电、加速DNA等各个领域都显示出巨大的潜力
静电掺杂旨在用超薄 MOS 结构中栅极诱导的自由电子/空穴电荷取代施主/受主掺杂剂种类。高掺杂的 N + /P + 端子和虚拟 PN 结可以在未掺杂层中模拟,从而促进具有丰富功能的创新可重构设备。其独特优点是载流子浓度和极性(即静电掺杂)可通过栅极偏置进行调整。在介绍基础知识之后,我们将回顾采用新兴或成熟技术(纳米线、纳米管、2D 材料、FD-SOI)制造的静电掺杂设备系列。通过强调与传统物理二极管的区别,讨论了 Hocus Pocus 二极管的多个方面。静电掺杂产生了许多具有出色记忆性和锐切换能力的频带调制设备。详细描述了其概念、内在机制和典型应用。
2023 3D Heterogenous Integration 2022 Artificial Intelligence Unit (AIU) 2021 World's First 2-nm Node Chip 2016 Quantum Computing in the Cloud 2012 Atomic Imaging 2011 Watson System 2009 Nanoscale Magnetic Resonance Imaging (MRI) 2008 World's First Petaflop Superconductor 2007 Web-scale Mining 2005 Cell Broadband Engine 2004 Blue Gene/L 2003 5 Stage Carbo纳米管环振荡器2000 Java性能1998硅在绝缘体上(SOI)1997铜互连接线1994硅锗(Sige)1990 1987年化学扩增1987年高温超导性(诺贝尔奖)(诺贝尔奖)(诺贝尔奖) 1971年语音识别1970关系数据库1967分形1966年单位记忆单元1957 Fortran 1956随机访问记忆记忆会计计算机(RAMAC)
由于其跨学科性质,近几十年来材料科学变得越来越重要。从材料的角度来看,纳米科学和纳米技术是在包括电子,光学,机械,生物学和环境等领域的各种目的中用于各种目的的新领域。最近,已经创建了一种新型的名为NAN复合材料的材料家族。将两种或多种具有完全不同且多样化的物理和化学特性的材料组合在材料界面上可辨别的材料被称为复合材料。纳米颗粒的大小从1到100 nm不等,并且表现出广泛的形态,例如纳米板,纳米管或纳米簇,散布在整个聚合物基质中。所得的纳米复合材料的机械,化学,热,磁性和电特性都受到这些纳米颗粒的较小重量百分比的影响。本文工作的主要目标是在热稳定的聚苯硫化物(PPS)聚合物基质中创建过渡金属硫化物的纳米复合材料。然后,使用各种表征技术,研究纳米复合材料的光学,热,磁,形态学和晶体学特征。
摘要:通常围绕电池建造电子产品。但是,最近创建了一种称为“纸电池”的全新电池,现在可以轻松地适应不同小工具的大小和形状。随着技术向更薄,更类似纸张的设备移动,纸电池的重要性正在增长。本文将介绍纸电池的技术操作。它将检查当前进步在纸电池生产中的好处,并评估其有效性。然后,将讨论纸电池的各种用途,以及可能出现的任何道德问题。本演示文稿将展示纸电池的设计如何利用纤维素和碳纳米管来产生灵活的电池,同时保持电气性能。稍后,我们将介绍纸电池如何将普通电池的元素结合到流线型薄薄的形式中。该设计的好处包括更广泛的应用程序和更快,更轻松的制造程序。关键字:纸电池,纳米管,电容器,组件,电子设备和电容器
钙钛矿纳米晶体(NC)(例如用于量子应用的CSPBBR 3)的兴趣正在迅速提高,因为已经证明它们可以表现为非常有效的单个光子发射器。在这种情况下要解决的主要问题是它们在操作激发下的光稳定性。在本文中,我们对高度有效的钙钛矿纳米纸的光学和量子性质进行了完整分析,该纳米蛋白含有已建立的方法,该方法是第一次生产量子发射的方法,并证明可确保增加光合稳定性。这些发射器与强烈的光子抗挑战一起表现出减少的眨眼。非常明显的是,这些特征几乎不会被激发强度的增加远高于发射饱和水平。最后,我们第一次实现了单个钙钛矿纳米管与锥形操作的纳米纤维的耦合,以旨在实现紧凑的集成单光子源以实现未来的影响。