均匀的粒子网格已经以这种方式生成,但是该技术将基材限制为浅层凹坑,很容易被不同的沉积厚度破坏。详细介绍了扩展ELD和包含其他底物结构的替代固态易碎趋势。通过我们小组与硅纳米线的合作(SINWS),25 - 27,可以观察到金属薄的lms很容易在圆柱纳米线的顶部形成颗粒。这被怀疑是由于Sinw表面几何形状对金属薄LM表面能的影响。假设调整SINW参数将导致对纳米线顶上金属颗粒形成的高度控制。尽管纳米线结构上的金属颗粒通常是在反向过程中生长的,但通过将颗粒沉积在表面上,然后蚀刻或生长
由于材料之间的晶格错误匹配,SI底物上窄带III – V材料的大规模整合仍然是一个挑战。[1,2]纳米级开口的外延生长降低了源自III – V/SI界面以传播到活动设备的缺陷的可能性,并证明了表现优势。[3]其他剩余的挑战是模式技术,[4]小型大小,高模式密度和经济高效的处理具有吸引力。高密度模式的一种可能的光刻溶液是块共聚物(BCP)光刻。[5–7]该技术依赖于自组装,这意味着该分辨率不是由clas的局限性设置的,例如辐射波长或接近度效应。[8,9] BCP光刻分辨率极限主要是由其总体聚合度和组成块不信用的程度设定的。[10]该技术是低成本的,允许在高图案密度下转移图案转移 - 至少至12 nm螺距。[11,12]一种特殊的材料,聚(苯乙烯) - 块-poly(4-乙烯基吡啶)(PS-B -P4VP),是所谓的高χBCP,即块之间具有很高的缺失性,这使自组件能够最低10 nm lamelar powd。[13]通过控制聚合物分子量,聚合物块的不混溶,聚合物块的体积分数,底物表面能和表面形象,如果向聚合物链提供足够的迁移率,则可以实现自组装。[14]可以通过添加热量来提供所需的迁移率,[15]通过介入聚合物可溶性蒸气,[16,17]或两者的组合。[18]许多设备应用程序受益于模式对齐,为此,可以使用定向自组装(DSA)来控制模式的定位。[5,6,19–22]然后,通常使用电阻的电子或光子暴露创建引导模式,并且指导是通过改变表面能量或创建不同地形来完成的。[19]
硅纳米结构已在现代微电子学中广泛使用。微电芯片中不断增加的整合密度不可避免地导致Si纳米结构的明显温度升高,这是承受大量热应力所必需的,以维持其适当的功能。si纳米结构也是许多新型纳米技术应用的基础,包括能量收集和存储,灵活且可拉伸的电子设备,传感器和纳米机械系统。[1]这些应用的可靠性问题要求对升高温度下的Si纳米结构的机械行为有基本的了解。在这里,我们报告了在RT至600 K的温度范围内单晶Si NWS的原位拉伸测试。[2]我们采用新开发的微电力系统(MEMS)[3-6]来进行透射电子显微镜(TEM)内的纳米热测试。该平台允许在不同温度下同时对原子尺度变形的TEM成像进行应力 - 应变测量。[2,7]基于MEMS的平台内置了一个片上加热器,从而使样品的受控加热。
在这里,我们报告了Inn纳米线太阳能电池的第一个实验证明,该电池是通过以1.78 eV的带隙能量溅射来沉积的。通过在N -Inn/ P -SI结构中添加无定形Si(A -SI)缓冲液,我们在保持其材料质量的同时,提高了所得设备的光伏性能。我们首先通过DC溅射在Si(100)上优化了Si的沉积,获得了带隙能量为1.39 eV的无定形材料。然后,我们研究了A-SI缓冲层(0 - 25 nm)对Inn纳米线对Si(100)底物的结构,形态,电气和光学性质的厚度的影响。使用15 nm缓冲液N -Inn/A-Si/P-Si纳米线异质结式太阳能电池表现出令人鼓舞的短路电流密度为17 mA/cm 2,开路电压为0.37 V,填充因子为35.5%,指向2.3%以下2.3%以下(Am 1 Sun)(AM 1.5G)(AM 1.5G)。这些工作降低了距离溅射的A-SI的组合,可以用作潜在的钝化层,而纳米结构的活性层的光捕获增强可提高溅射的III-nitride设备的光伏效率。
在锂离子微生物中,三维Si纳米阳极的应用引起了人们对实现高容量和集成的储能设备的极大兴趣。将SI纳米线与碳结合起来可以通过帮助其在循环过程中的机械稳定性来改善阳极性能。在这里,我们将光刻,低温干蚀刻和热蒸发作为半导体技术中常用的方法,用于制造碳涂层的Si Nanowire阳极。将无定形碳添加到Si纳米线阳极对增加初始面积的容量有影响。但是,可以观察到第100个周期的逐渐减小到0.3 mAh cm -2。验尸后分析揭示了循环后Si纳米线阳极的不同形态。表明碳涂料可以帮助Si纳米线抑制其体积的膨胀,并减少原始Si Nanowire阳极中发现的过量产生的无定形Si颗粒。
以及信息科学与应用国际会议 (ICISA) ⋅ 工程学院模拟与混合信号设计与测试中心委员会成员 ⋅ IEEE 微波理论与技术学报、IEEE 电子器件学报和 IEEE 固态电路杂志的技术审稿人 精选出版物 ⋅ S. Hamedi-Hagh、MY Siddiqui、M. Singh 和 S. Ardalan,“具有恒定回波损耗的低压数字控制 4GHz 可变增益放大器,”微电子选定领域杂志,2012 年。 ⋅ S. Hamedi-Hagh 和 D.-H. Park,“纳米线晶体管在驱动纳米线 LED 中的应用,”电气电子材料学报,第 13 卷,第 2 期,第 73-77 页,2012 年。 ⋅ S. Hamedi-Hagh、M. Tabesh、S. Oh、NJ Park 和 D.-H. Park,“用于近场通信的 UHF CMOS 前端设计”,电气工程与技术杂志,KIEE,第 6 卷,第 6 期,第 817-823 页,2011 年。⋅ Bindal, D. Wickramaratne 和 S. Hamedi-Hagh,“利用硅纳米线技术实现直接序列扩频基带发射器”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。⋅ Bindal, T. Ogura、N. Ogura 和 S. Hamedi-Hagh,“用于实现带扫描链的现场可编程门阵列架构的硅纳米线晶体管”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。 4,第 342-352 页,2009 年。⋅ S. Hamedi-Hagh、JC Chung、S. Oh、NJ Park 和 DH Park,“用于 GPS 通信系统的高性能贴片天线的设计”,电气工程与技术杂志,KIEE,第 342-352 卷。 4,第 2 期,282-286 页,2009 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“下一代纳米线放大器的设计和特性”,《VLSI 设计杂志》,文章 ID 190315,2008 年。⋅ JC Chung 和 S. Hamedi-Hagh,“单芯片通信系统的 PCB 匹配电感器和天线的设计”,《国际微波科学与技术杂志》,文章 ID 287627,2008 年。⋅ Hamedi-Hagh 和 A. Bindal,“使用完全耗尽周围栅极晶体管的纳米线 CMOS 放大器的特性”,《纳米电子学与光电子学杂志》,第 4 卷,第 2 期,第 282-286 页,2009 年。 ⋅ S. Hamedi-Hagh、S. Oh、A. Bindal 和 DH Park,“使用纳米线 FET 设计下一代放大器”,电气工程与技术杂志,KIEE,第 3 卷,第 4 期,第 566-570 页,2008 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“用于高速模拟集成电路的硅纳米线场效应晶体管的 SPICE 建模”,IEEE Transactions on Sotoudeh Hamedi-Hagh 第 3/6 页纳米技术,第 7 卷,第 766-775 页,2008 年。⋅ Bindal、S. Hamedi-Hagh 和 T. Ogura,“用于现场可编程门阵列架构应用的硅纳米线技术”,纳米电子学与光电子学杂志,第 3 卷,第 4 期,第 566-570 页,2008 年。 3,第 2 期,第 1-9 页,2008 年。 ⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线晶体管及其在未来 VLSI 中的应用:16×16 SRAM 的探索性设计研究”,纳米电子学和光电子学杂志,第 2 卷,第 294-303 页,2007 年。⋅ Bindal、A. Naresh、P. Yuan、KK Nguyen 和 S. Hamedi-Hagh,“利用硅纳米线技术设计双功函数 CMOS 晶体管和电路”,IEEE 纳米技术学报,第 6 卷,第 291-302 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“利用硅纳米线技术设计新型脉冲神经元”,纳米技术杂志(物理研究所),第 2 卷,第 301-302 页,2007 年。 18,第 1-12 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“关于节能硅纳米线动态 NMOSFET/PMESFET 逻辑的探索性研究”,IEE 科学、测量和技术会议录,第 1 卷,第 121-130 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“使用硅纳米线技术实现交叉开关架构的静态 NMOS 电路”,半导体、科学和技术杂志(物理研究所),第 22 卷,第 54-64 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线技术对单功函数 CMOS 晶体管和电路设计的影响”,纳米技术杂志(物理研究所),第 17 卷,第 4340-4351 页,2006 年。
通过细指栅技术,在 InAs 纳米线上实现了集成量子点 (QD) 电荷传感器的串行三量子点 (TQD)。通过直接传输测量和电荷传感器检测测量,研究了器件在少电子状态下的复杂电荷状态和有趣特性。由 TQD 中的 QD 和传感器 QD 形成的电容耦合并联双 QD 的电荷稳定性图显示 TQD 和传感器 QD 之间存在明显的电容耦合,表明电荷传感器具有良好的灵敏度。通过电荷传感器测量 TQD 的电荷稳定性图,同时进行的直接传输测量和基于有效电容网络模型的模拟很好地再现了电荷稳定性图中的整体特征。使用集成电荷传感器在能量退化区域详细测量了 TQD 的复杂电荷稳定性图,其中所有三个 QD 都处于或接近共振状态,并且观察到了四重点和所有可能的八种电荷状态的形成。此外,还演示并讨论了 TQD 作为量子细胞自动机的运行。
摘要:采用基于密度泛函理论(DFT)结合LDA+U算法的第一性原理计算方法,研究了Co/Mn共掺杂ZnO纳米线的电子结构与磁性能,重点研究了Co/Mn原子的最佳几何置换位置、耦合机制和磁性来源。模拟数据表明,所有构型的Co/Mn共掺杂ZnO纳米线都表现出铁磁性,并且Co/Mn原子取代(0001)内层中的Zn使纳米线进入基态。在磁耦合态,在费米能级附近检测到明显的自旋分裂,并且Co/Mn 3d态与O 2p态之间观察到强烈的杂化效应。此外,建立了形成Co 2+ -O 2 − -Mn 2+磁路的铁磁有序结构。此外,计算结果表明磁矩主要来源于Co/Mn的3d轨道电子,磁矩的大小与Co/Mn原子的电子结构有关。因此,通过LDA+U方法获得了Co/Mn共掺杂ZnO纳米线电子结构的真实描述,展示了其作为稀磁半导体材料的潜力。
单电子控制的基本概念:添加单个电子之前和之后的导电岛(a)。添加单个未补偿的电子电荷会产生电场 E,这可能会阻止添加以下电子。基于单电子转移的设备:a) 单电子盒:这是一种基于单电子转移的电子设备。图 (a) 显示了概念上最简单的设备,即“单电子盒”。该设备仅由一个小岛组成,小岛与较大的电极(“电子源”)之间通过隧道屏障隔开。可以使用另一个电极(“栅极”)将外部电场施加到岛上,该电极与岛之间通过较厚的绝缘体隔开,这不允许明显的隧穿。该场改变了岛的电化学电位,从而决定了电子隧穿的条件。图 (b) 显示了特定的几何结构,其中“外部电荷” Q e = C 0 U 可以很容易地可视化,(c) 显示了“库仑阶梯”,即平均电荷 Q = -ne 对栅极电压的阶梯式依赖性,适用于几个温度值。栅极电压 U 的增加会吸引越来越多的电子进入岛。电子通过低透明度屏障的传输的离散性必然使这种增加呈阶梯状。
作者对已发表文章的 ESI 中的一个小错误表示遗憾,发现图 S10 是图 4 的重复。在准备最终版本的手稿以供发表时,作者复制了图 4 并无意中将其粘贴为图 S10。更正后的图 S10 应如下所示。作者确认此错误不会影响本文的结论,并希望根据要求提供图 S10 的原始数据(请联系第一作者(Z. Li)和/或通讯作者(H. Liu))。作者感谢 Ziyang Guo 博士发现此错误。