将 2D 流动区域边界数字化。(注意,HEC-RAS 允许您从 Shapefile 导入特征。如果您愿意,可以右键单击 Perimeter 图层并选择导入 从 Shape 文件导入特征。接下来,选择 GISData 文件夹中的 Leveed Area.shp 文件并按导入...或者您可以练习使用编辑工具。)15. 双击以完成(结束)草图。
参与 ELASTIC 项目的多个团队的分布式特性促使我们在 D3.1 中为项目开发定义了一种基于 Scrum 的方法 [3]。通过这种策略,我们可以定义共同目标以及一系列任务,以确定和执行要完成的工作。以下小节描述了每个合作伙伴在项目第 2 阶段(第 7 至第 16 个月)考虑的冲刺。每个团队都以半隔离的方式工作,根据第 1 阶段定义的需求和 API 开发不同组件的功能。因此,冲刺是针对软件架构的不同技术组件的开发分别定义的。此外,还介绍了 ADAS/NGAP 用例的冲刺,因为在准备此特定用例的软件和硬件平台时也采用了基于 Scrum 的方法。
摘要 分子动力学 (MD) 模拟对于预测不同分子体系的物理和化学性质至关重要。虽然全原子 (AA) MD 提供了高精度,但其计算成本高昂,这促使了粗粒度 MD (CGMD) 的发展。CGMD 将分子结构简化为具有代表性的微珠,以降低成本,但会牺牲精度。像 Martini3 这样的 CGMD 方法,经过实验数据校准后,在各个分子类别中具有良好的泛化能力,但往往无法满足特定领域应用的精度要求。本研究引入了一种基于贝叶斯优化的方法来优化 Martini3 拓扑结构,使其能够适应特定应用,从而确保精度和效率。优化后的 CG 势能适用于任何聚合度,提供与 AA 模拟相当的精度,同时保持与 CGMD 相当的计算速度。通过弥合效率和精度之间的差距,该方法推动了多尺度分子模拟的发展,使各个科学技术领域能够以经济高效的方式发现分子。 1. 引言粗粒度分子动力学 (CGMD) 1,2 已成为材料开发的重要工具,为了解聚合物 3 、蛋白质 4 和膜 5 等复杂分子系统提供了关键信息。CGMD 的主要优势在于它能够在更大长度尺度和更长时间范围内探索分子现象,超越了传统全原子分子动力学 (AAMD) 6–8 模拟的能力,后者通常提供更高的分辨率,因此特别擅长捕捉详细的界面相互作用 9 。具体而言,CGMD 通过将原子团有效地表示为珠子 10–15 来实现这种加速,从而将模拟能力在时间上从皮秒扩展到微秒,在空间上从纳米扩展到微米。因此,粗粒度技术为传统 AAMD 无法获得的复杂分子现象提供了前所未有的洞察,从而能够研究聚合物自组装行为等复杂现象 16 。新兴的CGMD建模工具集依赖于两个关键组件来学习潜在的分子间关系:珠子映射方案和珠子间相互作用的参数化。这些组件的开发主要采用两种方法:自上而下10–12和自下而上13–
粗网格预测提供了巢界面上的边界条件,以便在细网格预测中使用。双向嵌套网格的优势包括在细网格上解析的细尺度工艺可以影响粗网格上的较大尺度流。这对于数值天气预测很重要,因为大气中的小规模过程极大地影响了大气中的大规模过程。由于与精细分辨率网格相比,粗分辨率网格上的预测所花费的时间和内存更少,因此模型的最外界可以远离预测区域,而细分辨率域仍然足够小,足以实时运行。移动巢也很常见,在当前模型中,较高的分辨率巢可以通过感兴趣的现象(例如飓风)移动。
█图4:A。前上颌前节的正面视图显示出不规则的牙龈边缘,肥厚的上颌frenum和两个出血部位,其中从中央和外侧切牙的根部从中部和侧牙之间取出微小粘剂。B.二极管激光牙龈切除术后牙龈边缘接近理想,并且进行了培养学。C.软组织愈合后,保持牙龈缘,没有明显的疤痕。
4. 吕勒奥理工大学土木环境与自然资源工程系,瑞典吕勒奥 97187 摘要:尺度不变特征变换 (SIFT) 自动提取控制点 (CP) 的能力在遥感图像中非常著名,然而,其结果不准确,有时由于生成少量错误 CP 对而导致匹配不正确,其匹配具有很高的误报。本文介绍了一种包含修改的方法,通过以不同方式应用绝对差和 (SAD) 来提高 SIFT CP 匹配的性能,适用于新一代光学卫星(称为近赤道轨道卫星 (NEqO))和多传感器图像。所提出的方法可以提高 CP 匹配率,并显著提高正确匹配率。本研究中的数据来自覆盖吉隆坡-北干地区的 RazakSAT 卫星。该方法包括三部分:(1)应用 SIFT 自动提取地面控制点;(2)使用经验阈值的 SAD 算法细化地面控制点匹配;(3)通过将原始 SIFT 结果与所提方法的结果进行比较来评估细化后的地面控制点场景。结果表明该模型具有准确和精确的性能,证明了所提方法的有效性和鲁棒性。关键词:地面控制点自动提取、绝对差和、近赤道卫星、多传感器、改进的 SIFT。1.
非确定性策略是指在给定博弈历史的情况下,分配一组可能采取的行动(或协议或计划)的策略,这些行动都应该是获胜的。一个重要的问题是改进此类策略。例如,给定一个仅允许安全执行的非确定性策略,对其进行改进,最终达到期望的状态。我们表明,涉及策略改进的战略问题可以在战略逻辑 (SL) 框架中得到优雅的解决,这是一种非常富有表现力的推理战略能力的逻辑。具体来说,我们引入了具有非确定性策略的 SL 扩展和一个表达策略改进的运算符。我们表明,与标准 SL 相比,模型检查此逻辑可以在不增加计算成本的情况下完成,并且可用于解决各种问题,例如最大允许策略或最大允许纳什均衡的合成。
严重塑性变形 (SPD) 因有可能将晶粒细化到亚微米或纳米级,从而显着提高力学性能而受到广泛关注。15) 然而,对于实际应用,扩大 SPD 样品的规模仍然是一项具有挑战性的任务。最近的研究表明,高压滑动 (HPS) 是一种有效的晶粒细化工艺,可使条带形式的晶粒细化并具有均匀的微观结构。69) 当 HPS 工艺与板材形式的样品进给相结合时,样品尺寸进一步增加,称为增量进给 HPS (IF-HPS),10,11) 以及与棒状样品绕纵轴旋转相结合,称为带旋转的多道次 HPS (MP-HPS-R)。12,13) IF-HPS 和 MP-HPS-R 工艺都具有很好的实际应用前景。尽管如此,对于 MP-HPS-R 工艺,迄今为止加工的最大直径为 10 mm 的棒材,并且在棒材中心周围获得了直径仅为 6 mm 的均匀应变区域。因此,在本研究中,我们挑战将 MP-HPS-R 工艺应用于直径 16 mm 的更大棒材的晶粒细化。本实验使用 Al 3Mg 0.2Sc(质量%)合金,因为当晶粒尺寸通过 SPD 工艺细化时,该合金表现出超塑性,并且总伸长率可被视为晶粒细化的程度。14 17) 使用透射电子显微镜 (TEM) 进行微观结构观察,并使用显微硬度测量和拉伸测试评估机械性能。结果表明,成功生产出具有超细晶粒结构的大尺寸棒材,同时保持了与 SPD 加工相关的基本特性。