摘要。在3D数据上解决人体部位的一种常见方法涉及使用2D分割网络和3D投影。遵循这种方法,可以在最终的3D分割输出中引入几个错误,例如分割错误和再投影错误。当考虑了非常小的身体部位(例如手)时,此类错误甚至更为重要。在本文中,我们提出了一种新算法,旨在减少此类错误并改善人体部位的3D序列。该算法使用DBSCAN算法检测噪声点和错误的簇,并更改利用簇的形状和位置的点的标签。我们评估了3DPEOPLE合成数据集和真实数据集上提出的算法,突出了它如何可以大大改善小身体(如手)的3D分割。使用我们的算法,我们在合成数据集上实现了多达4.68%的IOU,在实际情况下最多可占IOU的2.30%。
摘要 — 大型语言模型 (LLM) 的最新进展已在各种语言任务中展示了其卓越的能力。受文本到文本翻译细化成功的启发,本文研究了 LLM 如何通过引入联合细化过程来提高语音翻译的性能。通过 LLM 对语音翻译 (ST) 和自动语音识别 (ASR) 转录进行联合细化,ST 模型的性能在无需训练的上下文学习和参数高效的微调场景中都得到了显着提高。此外,我们还探讨了在上下文感知微调场景下文档级上下文对细化的影响。在包含七个翻译任务的 MuST-C 和 CoVoST 2 数据集上的实验结果证明了使用包括 GPT-3.5-turbo、LLaMA3-8B 和 Mistral-12B 在内的几种流行 LLM 所提出方法的有效性。进一步的分析进一步表明,与单独细化翻译相比,联合细化转录和翻译可获得更好的性能。同时,结合文档级上下文可显著提高细化性能。我们在 GitHub 1 上发布了我们的代码和数据集。
MECP2中的突变引起了RETT综合征(RTT),这是一种X链接的神经发育障碍,导致女性的认知障碍广泛。虽然RTT症状的确切病因尚不清楚,但其临床表现的一种可能解释是,由于大脑对神经元活动和感觉体验的变化的反应,MECP2的丧失导致神经回路的误差。在这里,我们表明MECP2在小鼠大脑中的四个残基(S86,S274,T308和S421)响应于神经元活性,并且我们会产生四倍的敲击 - 在(QKI)中 - 在(QKI)中,这四个活性 - 依赖性部位 - 依赖性的站点可预防丙烷磷酸化。QKI小鼠在两个大脑区域中不显示明显的RTT表型或可检测的基因表达变化。然而,来自QKI小鼠的视网膜生成突触的电生理记录表明,虽然消除突触消除最初在P14处是正常的,但在P20时会受到显着损害。值得注意的是,这种表型与先前报道的MECP2 NULL小鼠的突触细化缺陷不同,其中突触最初是完善的,但在产后第三周后退缩。因此,我们提出了一个模型,其中活性 - 诱导的MECP2磷酸化对于在产后早期的视网膜生成突触成熟的适当时间至关重要。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 8 月 6 日发布。;https://doi.org/10.1101/2020.07.23.217794 doi:bioRxiv preprint
尽管与 TRB 相关的许多流程在之前的演习中或由其他单位部分实施,但 IIIAC 在 TRB 中的意图是在单一机制的支持下正式化这些流程。集体功能、产品、关键联络人以及 TRB 的执行方法使 IIIAC 能够执行融合,将整个战场的效果与多域环境所需的速度和准确性相结合。军团目标企业能够调整优先级和资源以瞄准敏捷且适应性强的敌人,为下属单位创造条件以利用创造的机会窗口并取得战场成功。通过对每个 ATO 内的目标优先级进行关键调整,TRB 使军团专注于与敌人作战而不是计划。
摘要 本文详细介绍了如何使用 Rietveld 细化软件 MAUD 评估单相和双相材料的晶体学织构,并将其应用于洛斯阿拉莫斯国家实验室 (LANL) 获得的高压择优取向 (HIPPO) 中子衍射数据和增材制造生产的 Ti-6Al-4V 的电子背散射衍射 (EBSD) 极图。本文解决了 Rietveld 细化和软件操作中固有的许多隐藏挑战,以改善用户使用 MAUD 时的体验。本文对 MAUD 细化过程中的每个步骤进行了系统评估,重点是为任何版本的 MAUD 和任何材料系统设计一致的细化过程,同时也指出了以前开发的流程所需的更新。本文记录并解释了用户可能遇到的许多问题,并进行了多层次评估,以验证任何数据集的 MAUD 细化过程何时完成。还简要讨论了适当的样本对称性,以强调从 MAUD 中提取的纹理数据可能过于简单。本研究的附录中包含了两个应用所述过程的系统演练。这些演练的文件可在以下数据存储库中找到:https://doi.org/10.18434/mds2-2400。
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。
发育突触重塑对于形成精确的神经回路很重要,并且其破坏与自闭症和精神分裂症等神经发育障碍有关。小胶质细胞修剪突触,但这种突触修剪与重叠和并发神经发育过程的整合仍然难以捉摸。粘附G蛋白偶联受体ADGRG 1 / GPR 56以细胞类型的方式控制脑发育的多个方面:在神经祖细胞中,GPR 56调节皮质层压层,而在少突甘胶祖细胞细胞中,GPR 56在GPR 56中控制发育的骨髓和肌蛋白。在这里,我们表明小胶质细胞GPR 56以时间和电路依赖性方式在几个大脑区域保持适当的突触数。磷脂酰丝氨酸(PS)在突触前元素上以域特异性方式结合GPR 56,而GPR 56的小胶质细胞特异性缺失导致突触增加,这是由于PS + PES +突触前输入的小胶质细胞吞吐量降低而导致的。非常明显,小胶质细胞介导的突触修剪需要特定的GPR 56的剪接同工型。我们的目前数据在复杂的神经发育过程的背景下提供了小胶质细胞GPR 56介导的突触修剪的配体和同工型特定机制。
图 4 表面网格细化对减少缺失体素数量的影响。(a)体积到表面投影示意图。方块表示体积空间中的体素。黄色方块表示分配给网格顶点的体素。灰色方块表示由于顶点间距粗而未投影到任何网格顶点上的缺失体素。三角形表示表面网格的面。蓝点表示原始表面中的顶点。紫点表示通过表面细化添加的顶点。随着在细化过程中将顶点添加到表面,更多的体素被分配给顶点,从而减少了缺失体素的数量。(b)使用原始表面时缺失的体素,这些体素是通过增加表面细化的迭代次数而捕获的。放大的视图显示了距状沟内的示例表面(黑色轮廓)。颜色表示唯一体素索引。随着表面网格的细化,表面投影中包含了更多唯一体素。 (c)随着表面网格逐渐细化,独特 fMRI 体素的数量。随着每次细化迭代,包含的独特体素数量稳步增加,在四次细化迭代后出现稳定状态。虚线表示每个受试者(N = 3)的值;条形图显示受试者的平均值