趋化因子受体是细胞表面受体,在不同的生理过程中发挥着重要作用:胚胎发生、炎症反应、发育、白细胞归巢等。这些受体嵌入细胞膜,可形成同型二聚体、异型二聚体和寡聚体1,均为功能性构象。趋化因子受体在细胞膜上的组织和动力学影响其行为以及细胞对趋化因子梯度的反应2,3。肌动蛋白细胞骨架重塑、细胞膜脂质组成或寡聚化的改变会损害正常细胞反应。一些证据表明异二聚体具有功能性,因此有必要分析它们在细胞表面的动态,以及配体如何对其进行修饰。4,5 CXCR4(一种常规趋化因子受体)和非典型趋化因子受体 ACKR3 形成异二聚体。ACKR3 识别两种配体,CXCL11 和 CXCL12,而 CXCR4 仅识别 CXCL12。因此,这是一个非常好的系统,可以分析这两种受体在细胞表面的动态,以及配体如何对其进行修饰。4,5由于 CXCR4 和 ACKR3 共享一个配体,并通过不同的途径发出信号,该模型可以解释趋化因子受体异二聚体是否具有与单个受体形成的二聚体相似的动力学,或者相反遵循不同的特征,当与配体一起激活时,它如何影响复合物,以及产生的功能后果是什么。全内反射显微镜 (TIRF-M) 是一种新的先进荧光技术,在研究膜过程方面具有巨大潜力。2,3 当显微镜的入射光完全反射时,在盖玻片和细胞培养基之间的界面上会产生衰减波。这种物理现象允许与盖玻片接触的细胞荧光染料被激发,因此非常适合研究细胞膜相关现象。此外,TIRF-M 允许单粒子跟踪 (SPT)。在我们的案例中,对瞬时转染了与单体绿色荧光蛋白 (Ac-GFP) 偶联的趋化因子受体的细胞进行分类,以获得模拟生理条件的低受体表达细胞群。以人类 T 淋巴细胞为模型,我们研究了当人类 T 细胞表达两种受体 (CXCR4 和 ACKR3) 和仅表达 ACKR3 时 CXCR4 和 ACKR3 的动态。当人类 T 细胞不表达 CXCR4 时,ACKR3 寡聚化对共享配体 CXCL12 的响应要低得多。这些差异可能会影响信号传导特性和功能响应。
图 1a 显示了不同形式的神经刺激通常如何用于激活或抑制神经信号(动作电位)。动作电位是细胞膜的去极化,钾和钠等离子通过离子通道穿过细胞膜,从而产生级联效应。激活和抑制都有重要的临床用途:激活可用于恢复因创伤或帕金森病等退行性神经疾病而受损的神经系统部分功能,而抑制功能可以抑制癫痫发作期间大脑的功能障碍区域等。这种控制只是假设的理想设备的众多参数之一,如图 1b 所示。它将是低功耗的,以防止设备发热并延长电池寿命(或理想情况下是无线供电,但保持足够高且可控的功率水平是一项挑战 [9] ),谨慎、无创且兼容磁共振成像 (MRI),[10] 精确,但可远距离控制。它不会通过加热、光化学损伤或电荷积聚来损害组织。它将具有神经元选择性,并且具有易于维持的效果,但也可能
脂质转移蛋白 (LTP) 最初被发现为促进体外膜双层之间脂质运输的细胞质因子。从那时起,许多 LTP 已从细菌、植物、酵母和哺乳动物中分离出来,并在无细胞系统和完整细胞中得到了广泛的研究。LTP 领域的一个重大进展与细胞内膜接触位点 (MCS) 的发现有关,细胞内膜接触位点是内质网 (ER) 和其他细胞膜之间的小细胞质间隙,它们加速了 LTP 的脂质转移。由于 LTP 调节细胞膜内脂质的分布,并且许多脂质种类在控制细胞存活、增殖和迁移的关键信号通路中发挥作用,因此 LTP 与癌症相关的信号转导级联有关。越来越多的证据表明 LTP 在癌症进展和转移中发挥着重要作用。本综述描述了不同的 LTP 以及 MCS 如何导致细胞转化和恶性表型,并讨论了“异常”MCS 如何与人类肿瘤发生相关。
遗传性球形红细胞增多症 (HS) 或 1 型球形红细胞增多症 (MIM: # 182900) 是一种遗传性溶血性疾病,通常以血管外溶血症状为特征,包括贫血、黄疸和脾肿大。HS 在全球普遍流行,据报道欧洲和北美人群的发病率高达 1/2,000(Bolton-Maggs 等人,2012 年)。在中国,Wang 等人对 1978 年至 2013 年的文献进行了全面回顾。 (2015) 估计 HS 的总体患病率约为每 100,000 人 1.37 例,性别略有差异,男性每 100,000 人 1.27 例,女性每 100,000 人 1.49 例,这表明 HS 是该国最常见的孟德尔红细胞膜疾病( Tao 等,2016 )。 ANK1 、 SPTB 、 SPTA1 、 SLC4A1 和 EPB42 基因的遗传突变分别导致相应的锚蛋白、 β - 血影蛋白、 α - 血影蛋白、 带 3 和蛋白 4.2 的缺陷。 这些缺陷导致红细胞膜表面积减少,渗透脆性增加,并最终导致红细胞转化为
概述随着人类生物系统中潜在的生物医学应用的磁性纳米颗粒研究(NP)的指数增加,细胞毒性反应已越来越成为关注的重要主题。 用生物活性反应刺激标记的磁NP通常具有高度的两亲性环境,它们可以与水溶性贫血可能性高的生物学成分相互作用。 因此,磁NP的细胞毒性成为其在界面和整体中都理解的适用性的重要组成部分。 当磁NP与血流接触时,这是人类生物系统最重要的渠道,通常用于治疗性NP的各种生物学应用时,这尤其是一个重要的问题。 用不同的两亲性官能团标记的氧化铁NP具有与血细胞膜相互作用的潜在亲和力,并通过表面吸附的官能团诱导溶血。 表面吸附分子的官能团还促进了磁NP与血细胞膜的相互作用,并定量确定提取的血细胞量。 为了估计血细胞提取对不同官能团体性质的依赖性,可以合成用各种两亲性分子稳定的氧化铁NP。 两亲性分子具有强大的能力,可以同时同时进行亲水和疏水相互作用,同时吸附在纳米金属表面上,从而促进功能化NPS与生物系统的相互作用。 教学教师1。概述随着人类生物系统中潜在的生物医学应用的磁性纳米颗粒研究(NP)的指数增加,细胞毒性反应已越来越成为关注的重要主题。用生物活性反应刺激标记的磁NP通常具有高度的两亲性环境,它们可以与水溶性贫血可能性高的生物学成分相互作用。因此,磁NP的细胞毒性成为其在界面和整体中都理解的适用性的重要组成部分。当磁NP与血流接触时,这是人类生物系统最重要的渠道,通常用于治疗性NP的各种生物学应用时,这尤其是一个重要的问题。用不同的两亲性官能团标记的氧化铁NP具有与血细胞膜相互作用的潜在亲和力,并通过表面吸附的官能团诱导溶血。表面吸附分子的官能团还促进了磁NP与血细胞膜的相互作用,并定量确定提取的血细胞量。为了估计血细胞提取对不同官能团体性质的依赖性,可以合成用各种两亲性分子稳定的氧化铁NP。两亲性分子具有强大的能力,可以同时同时进行亲水和疏水相互作用,同时吸附在纳米金属表面上,从而促进功能化NPS与生物系统的相互作用。教学教师1。该提案证明了氧化铁磁NP的潜在用途是提取血细胞的极好的车辆,尤其是当它们用那些具有良好生物相容性与血细胞膜具有良好生物相容性的两亲性分子稳定时。因此,只有当溶血反应最小的时候,并且只有当磁NPS与细胞膜表达生物相容性时,则该提取才能有效。因此,该提案对于对生物界面和批量上磁NP的适用性的基本理解至关重要。目标本课程的主要目标如下:量化溶质 - 溶剂相互作用的大量和空气界面。b。两亲性分子和亲水性 - 脂肪平衡(HLB)。c。具有头部组和疏水性尾部修饰的高表面活性双子表面活性剂的合成和表征(间隔长n = 2、4、6、8和烃链长度M = 8、10、12、12、14、16)。d。从实验室量表到试点植物的生产,两亲性稳定的氧化铁NP的合成。e。氧化铁NPS在从水溶液中定量提取血细胞的适用性,以及使用磁性纳米颗粒的风险和缓解。Mandeep Singh Bakshi博士2。Jaspreet博士Kaur Rajput3。Rajeev Jindal博士
所有细胞均具有分子,例如蛋白质,从其细胞膜投射出来,这些分子被称为抗原不同个体在其细胞表面膜上淋巴细胞上具有不同的抗原可以识别出异物抗原,例如。响应外国抗原淋巴细胞的病原体的抗原使抗体与致病细胞表面的抗原形状相互互补
摘要 为了设计用于治疗和诊断应用的药物输送剂,了解共价功能化碳纳米管穿透细胞膜和与细胞膜相互作用的机制非常重要。在这里,我们报告了聚苯乙烯和羧基封端聚苯乙烯改性碳纳米管的全原子分子动力学结果,并展示了它们在模型脂质双层中的易位行为以及它们将布洛芬药物分子输送到细胞中的潜力。我们的结果表明,功能化碳纳米管在数百纳秒内被膜内化,并且药物负载进一步提高了内化速度。负载和未负载的管都通过非内吞途径穿过双层的最近小叶,在研究的时间内,药物分子仍然被困在原始管内,同时仍然附着在聚苯乙烯改性管的末端。另一方面,羧基封端的聚苯乙烯功能化可使药物完全释放到双层膜的下层,而不会对膜造成损坏。这项研究表明,聚苯乙烯功能化是一种有前途的替代方案,并作为基准案例促进了药物输送。