图 1. (A) 用于富集无错误 DNA 的受控反向链合成示意图。从左到右:来自不同来源的 DNA 可用作起始材料,如果尚未固定在固相上,则固定在固相上。使用高保真 DNA 聚合酶和在每个循环中提供预期的核苷酸,在 3' 端退火并延伸引物。所使用的核苷酸可以是可逆终止子、天然 dNTP 和/或不可逆终止子(组合),具体取决于预期的错误类型(参见正文)。受控反向链合成导致错误模板的滞后或过早终止,并使它们容易受到单链特异性酶消耗的影响
自 1987 年批准第一种由 CHO 细胞生产的生物治疗性蛋白质以来,研究人员一直在研究如何提高蛋白质滴度和产品质量,主要通过细胞系开发和生物过程优化。随着基因编辑方法(CRISPR/Cas 系统)的最新进展以及大规模系统生物学数据,取得了进一步的改进。这里我们概述了通过基因编辑从 CHO 细胞生产蛋白质的最新进展,并展望了通过合成生物学方法进行改进的未来。我们描述了遗传部件工具包扩展方面的新工作,包括新型启动子、终止子、转录因子和遗传回路,以及如何协同使用这些合成部件来继续改进蛋白质生产。
植物基因组数据库为遗传研究和植物育种计划提供了大量序列信息。许多具有经济价值的植物的基因组都已完全测序(Guo 等人,2021 年;Robbins 等人,2023 年;Wang 等人,2023 年)。基因组由编码特定蛋白质的基因和调节基因表达的基因间区域(启动子和终止子)组成。如果不对基因组中的单个基因进行功能表征,单独的基因组序列对任何育种计划都影响不大。功能表征旨在通过研究编码序列及其调控区域来揭示特定基因的功能。这样的研究通常涉及模型植物的转基因分析。拥有一个对单个基因进行充分表征的植物基因组数据库将有助于该植物的育种计划。
1. Illumina 测序: • 原理:使用可逆终止子进行合成测序。 • 主要特点:高准确度、短读长、高通量和成本效益。 应用:全基因组测序、外显子组测序、RNA 测序等。 2. Ion Torrent 测序: 原理:检测 DNA 合成过程中释放的氢离子。 主要特点:速度快、适合靶向测序和台式仪器。 应用:靶向测序,包括癌症面板和扩增子测序。 3. PacBio 测序(SMRT 测序): • 原理:在合成过程中实时观察 DNA 聚合酶。 • 主要特点:长读长、能够捕获结构变异。 • 应用:从头基因组组装、全长 RNA 测序和表观遗传学研究。
• 基因组约为 8 kbp • 它们产生两个同向转录本,其差异剪接产生 8-9 种蛋白质 • 转录可从至少两个启动子开始(P 97、P 670)。第一个是早期基因的启动子,第二个是晚期基因的启动子。 • 来自不同启动子的转录本使用不同的终止子(pAE)• 转录本:• P 97 -pAE 导致蛋白质 E6、7、1、5 的剪接和合成。• P 670 -pALs 导致蛋白质 E4、L1 和 L2 的剪接和合成。 • LCR(长控制区)序列包含与启动子相关的增强子。 • E2 蛋白的完整形式作为启动子(特别是早期启动子)的转录激活剂发挥作用,并与 E1 一起诱导复制(在 LCR 中)。
还使用特异性引物插入了 MglB (D236A) 中的突变。通过重叠 PCR 连接每个扩增片段,并通过热融合法亚克隆到线性化质粒中 [14]。所选载体为用于细菌表达的 pRSET B、用于哺乳动物表达的 pcDNA3 和用于植物表达的 pRI201_AN。将叶绿体定位信号、核酮糖二磷酸羧化酶小链 1A (RBCS1a) [15] 序列通过 Gly-Gly-Ser-Gly-Gly 接头融合在 LOTUS-Glc 和 LOTUS-Glc (D236A) 的 N 末端。为了共表达 miniSOG2 和 LOTUS-Glc,我们将 LOTUS-Glc 和 miniSOG2 与可自裂解的 P2A 肽连接起来 [16]。使用热休克法对大肠杆菌 (E. coli) 菌株 XL10-Gold 进行转化,并在 2 mL LB 培养基中用 0.1 mg/ml 氨苄青霉素在 37 ◦ C 下培养单个菌落过夜。通过碱性-SDS 裂解从收集的细菌沉淀中进行小规模 DNA 制备。使用 BigDye Terminator v1.1 循环测序试剂盒 (Thermo Fisher Scientific) 通过染料终止子循环测序确认质粒序列。LOTUS-Glc 及其变体的 DNA 序列显示在注释 S1 中。
植物基因组学领域取得了重大进展,高通量方法的使用越来越多,可以表征多个基因组范围内的分子表型。这些发现为植物性状及其潜在的遗传机制提供了宝贵的见解,特别是在模型植物物种中。尽管如此,有效地利用它们进行准确的预测是作物基因组改良的关键一步。我们提出了 AgroNT,这是一个基础性的大型语言模型,它以 48 种植物物种的基因组为训练基础,主要关注作物物种。我们表明,AgroNT 可以获得对调控注释、启动子/终止子强度、组织特异性基因表达的最新预测,并优先考虑功能性变异。我们对木薯进行了大规模的计算机饱和诱变分析,以评估超过 1000 万个突变的调控影响,并提供它们的预测效果作为变异表征的资源。最后,我们建议将此处汇编的各种数据集用作植物基因组基准 (PGB),为植物基因组研究中基于深度学习的方法提供全面的基准。预先训练的 AgroNT 模型可在 HuggingFace 上公开获取,网址为 https://huggingface.co/InstaDeepAI/agro-nucleo-transformer-1b,以供未来研究使用。
摘要基于靶向选择的基因组编辑方法已实现许多基础发现,并且通常以高精度使用。然而,我们发现,在芽殖酵母中用常见的选择盒替换 DBP1 会导致相邻基因 MRP51 的表达和功能降低,尽管所有 MRP51 编码和调控序列都保持完整。盒式诱导的 MRP51 抑制导致了在删除 DBP1 的细胞中检测到的所有突变表型。这种行为类似于“邻近基因效应”(NGE),这是一种机制未知的现象,即在一个基因座插入盒式会降低邻近基因的表达。在这里,我们利用 DBP1 盒式替换导致的强烈脱靶突变表型来提供对 NGE 的机制洞察。我们发现启动子(包括表达盒中的启动子)固有的双向性会驱动发散转录本,该转录本通过转录干扰和翻译抑制来抑制 MRP51,而这种抑制是通过产生长未解码转录本异构体 (LUTI) 介导的。驱动这种脱靶效应的发散转录本产生对于酵母表达盒来说是普遍存在的,并且随插入而普遍发生。尽管如此,脱靶效应通常可以通过局部序列特征自然阻止,例如终止盒插入位点和邻近基因之间的发散转录本的序列特征。因此,可以通过将转录终止子序列插入盒中(位于启动子两侧)来消除盒诱导的脱靶效应。由于这种脱靶效应的驱动特征被广泛保留,我们的研究表明,在使用集成表达盒的其他真核系统(包括人类细胞)中的实验设计和解释时应考虑到这一点。
非传统酵母东方伊萨酵母 (Issatchenkia orientalis) 的强健特性使其能够在高酸性条件下生长,因此,人们对使用多种碳源生产有机酸的兴趣日益浓厚。最近,东方伊萨酵母的遗传工具箱的开发,包括附加型质粒、多个启动子和终止子的特征以及 CRISPR-Cas9 工具,简化了东方伊萨酵母的代谢工程工作。然而,由于缺乏有效的多拷贝整合工具,多重工程仍然受到阻碍。为了促进通过多重 CRISPR-Cas9 介导的基因组编辑构建大型复杂代谢途径,我们开发了一条生物信息学流程来识别和确定全基因组基因间位点的优先级,并表征了位于 21 个基因间区域的 47 个 gRNA。对这些位点进行了向导 RNA 切割效率、基因盒的整合效率、由此产生的细胞适应度和 GFP 表达水平的筛选。我们进一步利用来自这些已充分表征的基因座的组件开发了一种着陆垫系统,该系统可帮助利用单个引导 RNA 和用户选择的多个修复模板整合多个基因。我们已经证明了利用着陆垫同时将 2、3、4 或 5 个基因整合到目标基因座中,效率超过 80%。作为概念验证,我们展示了如何通过一步整合多个位点的五个基因拷贝来提高 5-氨基乙酰丙酸的产量。我们进一步证明了该工具的效率,即利用单个引导 RNA 和五个不同的修复模板整合五个基因表达盒,构建了琥珀酸生产代谢途径,从而在批量发酵中生产出 9 g/L 的琥珀酸。这项研究证明了单个 gRNA 介导的 CRISPR 平台在非传统酵母中构建复杂代谢途径的有效性。该着陆垫系统将成为 I. orientalis 代谢工程的宝贵工具。
摘要 动机:CRISPR/Cas9 技术已被开发为最有效和最广泛使用的基因组编辑工具,用于修改众多植物的基因组,其中双链 DNA 中的 cas9 切割由单个向导 RNA(sgRNA)中包含的 20 个核苷酸序列驱动。然而,使用 CRISPR/Cas9 同时编辑多个目标仍然是该领域的技术挑战(Ma 等人,2014 年)。方法:在本研究中,使用 Golden Gate Assembly 克隆策略生成多个 CRISPR/cas9 编辑结构以用于蓖麻植物。模块化克隆系统使用 IIS 型酶在其识别位点外切割,从而允许有效组装具有兼容突出端的 DNA 片段,从而同时促进多个序列的正确取向(Engler 等人,2014 年)。我们的主要目标是获得一种遗传构建体,允许在同一个质粒载体中表达两个 sgRNA 和 cas9 核酸酶,以便通过农杆菌感染转化蓖麻。选择了两个针对 FAH12 蓖麻羟化酶的 CRISPR 靶标以避免可能的脱靶。这些靶标包含在 sgRNA 中并克隆到 0 级质粒中,每个质粒两侧都有 BsaI 酶的限制位点。Golden Gate 1 级反应包括几个 BsaI 消化和连接循环,将 U6 启动子与两个 sgRNA 分别组装到 1 级质粒中,两侧都有 BpiI 限制位点。同时,cas9 酶在双强 35S 启动子的控制下克隆,随后是来自 0 级质粒的胭脂碱合酶 (nosT) 终止子,包括这些元素,克隆到另一个 1 级质粒中,两侧也有 BpiI 限制位点。然后,用 BpiI 消化所有 1 级元件(U6-sgRNA1、U6-sgRNA2、2x35S-cas9-nosT)时,会出现兼容的突出端,这些突出端可以以正确的顺序和方向组装成 2 级结构。最终结果是 2 级质粒,其中包括 FAH12 羟化酶的 CRISPR/cas9 多重基因组编辑所需的所有元件。该构建体将转移到农杆菌中,以便以后进行蓖麻胚转化。