金属卤化物钙钛矿 (MHP) 是一种具有优异性能的半导体材料,广泛应用于各个行业。这些材料通常表现出直接跃迁半导体行为,其特点是吸收系数高、激子结合能低,从而具有出色的 PV 性能。此外,MHP 显示出高效的载流子传输速率、较长的载流子寿命和显著的扩散长度,从而能够以最少的复合实现电子和空穴的有效传输。1 利用 MHP 作为吸收层的钙钛矿太阳能电池 (PSC) 已成为第三代太阳能电池的典范。2009 年,Miyasaka 等人实现了 PSC 开发的一个重要里程碑。用钙钛矿取代染料敏化太阳能电池中的吸收材料,使光伏转换效率 (PCE) 达到 3.8%。2 从那时起,PSC 引起了广泛关注,其 PCE 经历了快速增长,如图所示。1(A)。3 – 9 目前,单结 PSC 已实现认证 PCE 26.14%,10 稳步接近 Shockley – Queisser 效率极限 33.7%。11
摘要:螯合剂在微电子工艺中常用于防止金属离子污染,螯合剂的配体片段在很大程度上决定了其与金属离子的结合强度。寻找具有合适特性的配体将有助于设计螯合剂以增强微电子工艺中对基底上金属离子的捕获和去除。本研究采用量子化学计算模拟十一种配体与水合态的Ni 2+ 、Cu 2+ 、Al 3+ 和Fe 3+ 离子的结合过程,用结合能和结合焓来量化金属离子与配体的结合强度。此外,我们利用前线分子轨道、亲核指数、静电势和基于分子力场的能量分解计算探讨了结合作用机制,并解释了十一种配体结合能力的差异。根据我们的计算结果,提出了有前景的螯合剂结构,旨在指导新螯合剂的设计以解决集成电路工艺中的金属离子污染问题。
摘要:严重的急性呼吸综合症冠状病毒2(SARS-COV-2)破坏了全球正常生活。这种致命的病毒显示出许多变体,并在各个国家夺走了许多生命。尖峰蛋白在该病毒的传播和感染性中起主要作用。科学界正在努力统治这种病毒并挽救人类的生命。在这项工作中,重新利用的药物已成为筛查FDA批准药物的可靠工具。在本研究中,我们对两个重要的COVID-19靶标(非结构性蛋白质和主蛋白酶)进行了虚拟筛选,其中PDB IDS 6W4H,6LU7和6W63。对基于对接得分,结合能和有效命中的最佳药物进行了比较分析。在265个分子中,最佳的7个分子对这两个靶标都显示出可靠的命中。最佳七种药物,即萨奎那韦,indinavir,tenofovir alafenamide,ritonavir,nelfinavir麦锡酸盐,头孢菌素和plazomicin。我们的结果表明,这些配体组合或单独的配体可以作为针对SARS COV-2开发药物的新型前景。
稿件的所有计算资源均可在 Git 存储库 [1] 和相关数据文件 [2] 中找到。其中包括用于生成输入文件、运行计算、处理和分析数据以及生成图形的脚本。文件组织在存储库中的 README.md 文件中描述。所有 DFT 计算均使用 FHI-aims [3] 完成,其使用原子中心基组和数值径向部分。我们使用严格的默认基组和网格设置,这可确保本文研究的范德华 (vdW) 体系的结合能数值收敛到 0.1 kcal/mol。MBD 计算借助于集成到 FHI-aims 中的 Libmbd 库 [4] 执行,并且可使用当前开发版本在 FHI-aims 中直接执行 MBD-NL 计算。我们目前的实现不包括函数导数δαVV'[n]/δn,因此本文在自洽PBE密度上评估MBD-NL,而导数的实现仍在进行中。重要的是,已发现由范德华相互作用引起的电子密度变化对相互作用能和核力的影响可忽略不计[5]。S66、X23和S12L集的PBE、PBE0和VV10能量取自[6],其使用与本文相同的数值设置。对于分子晶体,所有DFT和MBD计算均使用逆空间中密度至少为0.8˚A的k点网格。对于硬固体,我们使用了[7]中的k点密度。所有分子和晶体几何形状均直接取自各自的基准集,未进行任何松弛。表 I 报告了 MBD-NL、MBD@rsSCS 和 VV10 与 PBE 和 PBE0 函数结合对一组有机分子晶体(X23,[11])、一组超分子复合物(S12L,[12])和一组 26 种层状材料(称为“26”,[10])的性能。在标准范德华数据集中,S12L 是唯一一个 MBD-NL 与 PBE 和 PBE0 函数结合时实现不同性能的数据集。这主要是因为 PBE 与 π – π 复合物的结合力比 PBE0 略强。对于大型 π – π 复合物,半局部 DFT 和长程范德华模型之间的适当平衡尚不清楚 [6]。在“26”集中,MBD@rsSCS 哈密顿量对 26 种化合物中的 20 种具有负特征值。然而,为了获得有限能量,我们使用了 Gould 等人提出的特征值重标度 [9]。图 1 比较了由 PBE-NL 计算的混合有机/无机界面的结合能曲线以及 Ruiz 等人的 MBD@rsSCS 和 TS 方法的表面变体 [13]。表 II 列出了 DFT+MBD 的时序示例
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。
摘要:糖尿病神经病是糖尿病的痛苦并发症,可能会用可可豆荚中的化合物治疗。这项研究研究了可可POD中包含的各种类黄酮(Catechin,Epicatechin,槲皮素,Luteolin,apigenin,naringenin和procyanidin)与规范瞬态受体电位(TRPC6)受体的相互作用。用于预测这些化合物与TRPC6的结合亲和力。这涉及准备类黄酮的分子结构和TRPC6蛋白进行模拟。模拟提供了对类黄酮和TRPC6之间结合效率和相互作用能的见解。的发现表明,procyanidin和槲皮素分别在-7.15 kcal/mol和-6.37 kcal/mol中表现出最高的结合能。procyanidin与氨基酸残基ALA508,ARG609,ARG758,ASN765,ASP530,GLU512,HIS446和MET505相互作用,而槲皮素与Arg758,Asp530,Glu512和Glu524结合。这些结果突出了槲皮素和procyanidin作为糖尿病神经病的TRPC6靶向治疗方法的候选者的潜力。本研究为创建新,有效和安全的糖尿病神经病药物的基础奠定了基础。
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。
未来的分子微电子学要求设备的电子电导率可调,而不会损害分子电子特性的电压控制。本文,我们报告了在半导体聚苯胺聚合物或极性聚-D-赖氨酸分子薄膜与两种价态互变异构复合物之一(即 [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] 和 [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ])之间创建界面的影响。利用密度泛函理论指导的 X 射线光发射、X 射线吸收、逆光发射和光吸收光谱测量来识别电子跃迁和轨道。除了结合能和轨道能级略有改变外,底层基底层的选择对电子结构影响不大。在 [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] 中存在一个显著的未占据配体到金属电荷转移态,该态对 Co II 高自旋态中聚合物和互变异构复合物之间的界面几乎不敏感。
材料综合,形态控制和设备工程已将PCE推向了19%以上的单连接设备,而串联配置的PCE超过20%。[5 - 8]关键的发展是非富裕受体(NFAS)的持续进展。特定的,低于1.6 eV的典型光学带隙(E G)的低带隙材料可以增强太阳光利用率:AM 1.5G太阳能光谱的光线分配使约51%的太阳能光子光子在近交易所区域(NIR)区域中发现。[9]此外,在这些材料中发现了其他吸引人的物理特性,包括强偶极矩和低激子结合能。[10]这些在NIR地区吸收的低频带NFA吸引了许多新兴的PV技术的兴趣。它们已在半透明的OPV中广泛用于各种应用,包括Agrivoltaics,电力生成窗户,热绝缘,磨损电子设备和建筑物集成的PV。[9,11,12]此外,它们将吸收范围扩展到NIR光谱的能力已在串联OPV中,[13-16] Ternary opvs,[17-19]和nir-absorting有机光探测器。[20 - 23]
Buas-Buas(Premna serratifolia)从浸润,渗透和净化中叶提取物已被证明是α-葡萄糖苷酶抑制剂。由于尚未进行α-葡萄糖苷酶抑制剂的植物化学成分的努力,因此需要进行一项研究,以确定已在体外和硅中证明的活性的负责任化合物。利用柱色谱法和半程释放性高性能液相色谱法(HPLC)的乙酸乙酯馏分分离活性化合物具有最佳的抑制作用。 通过超高的液相色谱 - Q精确杂交四极杆 - 轨道高分辨率高分辨率质谱法(UHPLC-Q-Q-orbitrap HRMS)研究了分离株的化合物。 通过使用N末端麦芽糖酶 - 葡萄糖氨基酶的分子对接[蛋白质数据库(PDB)代码:2QMJ],C-末端麦尔氨酸酶 - 糖 - 葡萄糖酶(PDB代码:PDB代码:3top)和Isomaltase(Pdbb code)(pDABB代码),研究了α-葡萄糖苷和活性化合物的相互作用。 Analyzed by UHPLC-Q-Orbitrap HRMS, nine flavonoids were detected, which are centaureidin, chrysin, pectolinaringenin, glycitein, kaempferide, syringetin, tricin, casticin, and 3,5,4ʹ-trimethoxy- 6,7-methylenedioxyflavone (estimated to be a new 化合物)。 casticin – 2qmJ,Tricin – 3top和Centaureidin – 3A4A复合物的结合能较低,为-5.29,-6.77,和-8.02 kcal/mol和-8.02 kcal/mol和抑制常数(Ki),为131.54、10.89、10.89,和0.34、10.89,和0.34 µmmm,perequentimal sequentimal µmmm,sequentially。利用柱色谱法和半程释放性高性能液相色谱法(HPLC)的乙酸乙酯馏分分离活性化合物具有最佳的抑制作用。通过超高的液相色谱 - Q精确杂交四极杆 - 轨道高分辨率高分辨率质谱法(UHPLC-Q-Q-orbitrap HRMS)研究了分离株的化合物。通过使用N末端麦芽糖酶 - 葡萄糖氨基酶的分子对接[蛋白质数据库(PDB)代码:2QMJ],C-末端麦尔氨酸酶 - 糖 - 葡萄糖酶(PDB代码:PDB代码:3top)和Isomaltase(Pdbb code)(pDABB代码),研究了α-葡萄糖苷和活性化合物的相互作用。Analyzed by UHPLC-Q-Orbitrap HRMS, nine flavonoids were detected, which are centaureidin, chrysin, pectolinaringenin, glycitein, kaempferide, syringetin, tricin, casticin, and 3,5,4ʹ-trimethoxy- 6,7-methylenedioxyflavone (estimated to be a new 化合物)。casticin – 2qmJ,Tricin – 3top和Centaureidin – 3A4A复合物的结合能较低,为-5.29,-6.77,和-8.02 kcal/mol和-8.02 kcal/mol和抑制常数(Ki),为131.54、10.89、10.89,和0.34、10.89,和0.34 µmmm,perequentimal sequentimal µmmm,sequentially。