尼泊尔的温度升高预计将高于全球平均水平。年平均温度预计到本世纪中叶的平均平均升高为2.9°C,在最高排放方案下,到本世纪末,平均范围为2.9至4.3°C,与1986 - 2005的基线周期相比。降水。尼泊尔已经在1天降水的持续时间,强度和频率以及为期5天的降水事件和预测中显着增加。短期和长期的平均年降水量可能会增加。在长期(2036-2065)中,中期(2016- 2045年)的平均年度降水可能会增加2%–6%(2016- 2045年),而年平均降水量可能会增加8%–12%。耦合模型比较项目阶段5(CIMP5)集成模型在所有排放途径下,到2080 - 2099年预计的年度干旱概率至少为10%,干旱概率的增加。河流流量:降水增加将增加平均河流流量;但是,干旱事件的频率和严重程度已经发生,这种趋势将在气候变化下继续。除拉贾普尔以外的所有副标题都由非冰川河喂养,不会受到雪和冰川融化的影响。项目组件对气候和天气状况高度敏感,包括:Rajapur的水的供应非常复杂,这条大型编织的河流的水可用性主要受到东岸流量的可用性的影响;卡纳利河盆地气候变化的长期建模表明,由于温度升高和代表性浓度途径下的降雨平均排放量(RCP)4.5将增加6.4%2046至2070和8.4%2070至2099年。
摘要:由于技术的进步,学习的各种方法学可能性在教育领域获得了动力,这成为调查的肥沃基础。在这个问题中,这项工作的指导目标出现了,因为以其核心衡量和理解与技术资源相关的神经学习的一些贡献的机会,作为教学学习过程的指标。Neuro -Learning开辟了理解认知过程的方法。首先,对与技术使用相关的神经学习的基础进行了分析,特别是在学生的形成背景下。此外,通过图像(媒体和代表)等数字资源在网络文化中如何进行教学学习的各个方面。为此,研究具有探索性特征,从方法上讲是一项定性研究,得到了书目研究的支持,作为理论支持作者,为这一研究贡献了这一研究。从书目贡献中产生的数据,通过该数据可以得出结论,与技术相关的神经学习可以帮助大量学习,但是需要仔细的计划来提供简化学习的方法。关键字:神经学习;技术;教学实践。
语义细分是计算机视觉中的核心任务,它允许AI模型交互和了解其周围环境。与人类在潜意识中的场景相似,这种能力对于场景的场景至关重要。但是,许多语义学习模型面临的挑战是缺乏数据。现有的视频数据集仅限于不代表现实示例的简短,低分辨率视频。因此,我们的关键贡献之一是徒步旅行数据集的自定义语义细分版本,其中包含来自不同城市之旅的长达一个小时,高分辨率的真实世界数据。此外,我们评估了在我们自己的自定义数据集中开放的开放式语义模型的性能,并讨论未来的含义。关键字
摘要 结直肠癌 (CRC) 是全球癌症死亡的主要原因之一,而转移是 CRC 相关死亡的主要原因。转化生长因子-β (TGF- β) 不仅在调节正常结肠中起着重要作用,而且在 CRC 的发展和转移中也起着重要作用。然而,TGF- β 不被认为是理想的治疗靶点,因为它根据肿瘤阶段表现出促肿瘤发生和抗肿瘤发生的活性。因此,找到可以靶向损害 CRC 转移的 TGF- β 下游信号传导成分非常重要。在这里,我们表明 TGF- β 促进 CRC 迁移并上调长链非编码 RNA 牛磺酸上调基因 1 (TUG1) 的表达。TUG1 敲低抑制了体外 CRC 细胞的迁移、侵袭和上皮 - 间质转化 (EMT),并降低了体内 CRC 肺转移。 TGF- β 诱导转移,而 TUG1 敲低则抑制了这种作用。此外,TGF- β 不能逆转 TUG1 敲低的抗转移作用。这些数据表明 TUG1 是 TGF- β 的下游分子。此外,TWIST1 表达随着 TGF- β 处理而增加,而 TUG1 敲低则降低了 CRC 细胞中的 TWIST1 表达。TWIST1 敲低抑制了 CRC 细胞的侵袭和 EMT;这些作用不受同时敲低 TUG1 的影响,表明 TWIST1 是 TUG1 的下游介质。此外,TUG1 在 CRC 患者中显著过表达。总之,TGF- β 通过 TUG1/TWIST1/EMT 信号通路促进 CRC 转移。TUG1 可能是抑制 TGF- β 通路激活治疗 CRC 的一个有希望的药物靶点。
目的 囊性纤维化 (PWCF) 患者患结直肠癌的风险明显高于一般人群 1 。本文概述了英国某个区域中心针对 PWCF 的结直肠癌筛查计划的设计和实施情况。方法 实施“计划-执行-研究-行动”循环来建立该服务。它确定了服务设计的临床考虑因素,并结合实时服务用户和利益相关者的反馈,以简化服务提供。结果 确定了服务设计中的实际考虑因素,包括需要针对 CF 的肠道准备和内窥镜检查计划、监测间隔的实用方法以及需要多学科治疗方法。试点阶段进行了 14 次结肠镜检查。64% (9/14) 的肠道准备良好或优秀,100% (14/14) 报告肠道准备可忍受并愿意重复该程序,腺瘤检出率为 28.6%,发现 1 个晚期息肉。确定了准备不足的个体风险因素,包括既往远端肠梗阻病史和非专用 CF 病房的住院肠道准备。讨论作者提供了 PWCF 筛查服务的真实经验作为服务设计的蓝图。随着 PWCF 患者寿命的延长和生活质量的提高,内窥镜检查服务充分满足他们的需求非常重要。
在过去的十年中,我们看到了机器学习可以为我们做的巨大突破。现在似乎不可能执行计算机执行的任务。 此类任务的突出示例包括图像或语音识别。 在这个项目中,我们建议使用深度学习(机器学习的一部分)来解决纯数学的困难问题,即特定的结理论。 更确切地说,提出的项目由三个部分组成(请参见下面的第1、2和3个部分)。 第一部分包括训练人工神经网络,以预测结的两个重要特性。 一旦完成第1部分和第2部分,结果将应用于解决结理论中一个重要的开放问题;琼斯多项式是否检测到没有打结的问题。 申请人具有纯数学(代数,几何,拓扑)的背景,重点是结理论。 我们要求$ 5,000的夏季薪水,因此申请人有资源能够度过一整个夏季的资源,以扩大对深度学习的最新方法的了解,收集初步数据(即创建一个结图的数据库),培训神经网络,并设计适合学生参与的后续行动。 请注意,申请人已经开始在阿拉巴马大学建立一个机器学习社区,参加了一个非正式研讨会,该研讨会是由2022年春季数学和统计学系的教职员工和学生组织的。>现在似乎不可能执行计算机执行的任务。此类任务的突出示例包括图像或语音识别。在这个项目中,我们建议使用深度学习(机器学习的一部分)来解决纯数学的困难问题,即特定的结理论。更确切地说,提出的项目由三个部分组成(请参见下面的第1、2和3个部分)。第一部分包括训练人工神经网络,以预测结的两个重要特性。一旦完成第1部分和第2部分,结果将应用于解决结理论中一个重要的开放问题;琼斯多项式是否检测到没有打结的问题。申请人具有纯数学(代数,几何,拓扑)的背景,重点是结理论。我们要求$ 5,000的夏季薪水,因此申请人有资源能够度过一整个夏季的资源,以扩大对深度学习的最新方法的了解,收集初步数据(即创建一个结图的数据库),培训神经网络,并设计适合学生参与的后续行动。请注意,申请人已经开始在阿拉巴马大学建立一个机器学习社区,参加了一个非正式研讨会,该研讨会是由2022年春季数学和统计学系的教职员工和学生组织的。
RAS 作为阳性预测生物标志物:重点关注肺癌和结直肠癌患者/Malapelle,U.;帕西利亚 (Passiglia),F.;克雷莫里尼,C.;皇家,ML;佩珀,F.;皮萨皮亚,P.;阿瓦隆,A.; Cortinovis,D.;来自 Stefano, A.;法桑,M.;方塔尼尼,G.;加莱塔,D.;劳里塞拉,C.;列表,A.;卢帕基斯(Loupakis),F.;佩奇斯,F.;皮埃特兰托尼奥,F.; Pilotto,S.; Lines,L.;比安奇,AS;帕拉,HS; Tiseo,M.; Verze,M.; Troncone,G.; Novello, S..-出自:欧洲癌症杂志。 - ISSN 0959-8049。 - 146:(2021),页74-83。 [10.1016/j.ejca.2021.01.015]