已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
2024 年 6 月 12 日至 14 日 宾夕法尼亚州立大学 注册、早餐、午餐和海报展示将在 Benkovic 大楼三楼举行 口头会议将在 Thomas 大楼举行 地图可在以下网址获取:https://www.k-state.edu/chem/conferences/ismpc_2024/attendees/transportation/transportation.html 6 月 12 日,星期三 上午 7:30 早餐/注册(Benkovic 大楼) 上午 8:10 移至 Thomas 大楼 上午 8:20 欢迎会议 1:电子结构和结构-性能关系 上午 8:30 Tatsuya Tsukuda(东京大学):“化学修饰的金超原子的电子结构和光学特性” 上午 9:00 Hannu Häkkinen(于韦斯屈莱大学):“单层保护金属团簇的计算机模拟的前景与挑战” 上午 9:30 Sukhendu Mandal(印度科学教育与研究中心特里凡得琅校区):“原子级精准银和铜纳米团簇的结构-性能关联” 上午 10:00 休息 第 2 场:合成和结构控制与表征方面的进展 上午 10:30 Thalappil Pradeep(印度理工学院马德拉斯分校):“碳硼烷硫醇:用于原子级精准团簇的多功能配体平台” 上午 11:00 Anindita Das(南卫理公会大学):“基于锑基配体的原子级精准金属纳米化学” 上午 11:30 Kevin Stamplecoskie,皇后大学,“硫醇和卡宾稳定的金纳米团簇的光化学合成、纯化和表征” 下午 12:00 Vivek Yadev(印度理工学院马德拉斯分校):“通过位点特定原子掺杂对纳米团簇进行光学调制” M 17 纳米团簇:以 Ag 17 、 AuAg 16 、 Cu 4 Ag 13 和 AuCu 4 Ag 12 为例” 12:15 pm Subarna Maity(东京大学):“具有少原子银壳的金超薄纳米棒的表面等离子体共振” 12:30 pm 午餐(Benkovic 大楼)
摘要 热辐射在能量转换过程中起着重要作用。利用纳米材料和光子结构调整热辐射的能力可以为能源和信息应用带来重要机遇。在本次研讨会上,我将介绍我最近关于控制热辐射进行能量收集、主动制冷和被动冷却的研究。首先,我将讨论基于纳米级辐射传热的能量转换实验 [1-2],这些实验为热能收集指明了新的机会。具体来说,我将描述一个纳米间隙近场热光伏实验 [2],我证明了通过将热热发射器和光伏电池之间的距离缩小到纳米级,可以大大提高发电率(40 倍)。其次,我将描述使用非相干光(热辐射)通过控制光子的化学势进行主动光子制冷的首次实验演示 [1]。我将说明如何通过将表面放置在反向偏置发光二极管附近来实现表面的净冷却。冷却是由于反向偏置二极管的热辐射被抑制,以及跨纳米级间隙表面的光子发射增强所致。这为将纳米光子学和光电器件相结合实现固态制冷指明了一条有前途的道路。第三,我将讨论如何利用寒冷的外层空间 [3-4] 作为热力学资源用于被动冷却和能源效率应用。我将展示将太阳能吸收器的温度降低 13 ˚C 同时保持其阳光吸收率的结果,这表明太阳能电池的效率显著提高 [3]。接下来,我将展示通过使用超选择性热发射器和真空系统实现创纪录的 42 ˚C 温度降低的结果 [4]。最后,我将概述我未来的研究方向。传记朱林晓博士在斯坦福大学获得应用物理学博士学位和电气工程硕士学位,在中国科学技术大学获得物理学学士学位。他的博士研究方向为利用光子结构控制电磁传热,指导教授为范山辉教授。朱博士目前是密歇根大学机械工程系的博士后研究员,师从 Pramod Reddy 教授和 Edgar Meyhofer 教授,从事近场能量转换实验。朱博士的研究兴趣在于控制光和热以用于能源和信息应用。他曾被《麻省理工技术评论》评为 35 位 35 岁以下创新者(中国 2019 年)。他的研究成果曾被《发现》、《科学美国人》等媒体报道。
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
概要:胶体的概念涵盖了从合成纳米粒子、纳米棒和纳米片到功能性生物单元等各种各向同性和各向异性的粒子,它们具有多种尺寸、形状和功能。材料科学致力于研究它们的各种功能,而它们在生物世界中无处不在,具有多种功能。由于其科学和技术重要性,人们对其进行了研究的各种合成胶体;但它们的特点是尺寸分布有限、形状和相互作用不完善,功能尚未完全工程化。这与尺寸、形状和功能精确的生物胶体形成鲜明对比。材料科学一直在从生物世界中寻找灵感,以通过自组装和层次结构进行结构控制,并在生物灵感中确定功能组合的新途径。在此,我们首先讨论基于生物基序引导组装的技术相关合成胶体的高度定义结构控制的不同方法。首先,我们描述如何在空心蛋白质笼内组装多分散纳米粒子,以实现明确定义的组装和分层堆积。另一种方法依赖于基于 DNA 纳米技术的组装,其中工程 DNA 结构允许程序化组装。然后,我们将讨论具有特别窄的尺寸分散性或甚至原子精确结构的合成胶体,用于新的组装和潜在功能。此类胶体可以具有明确定义的膜填料,从而允许高模量。它们可以使用光响应部分进行切换,并且可以启动不同几何形状的较大组装的堆积。重点是原子定义的纳米团簇,其允许通过超分子相互作用(例如定向氢键)进行明确定义的组装。最后,我们将讨论刺激响应胶体的新功能,甚至是受生命启发的复杂响应功能。其中,受生物学习启发的刺激响应材料可以实现下一代此类材料。经典条件作用是最简单的生物学习概念之一,需要两个刺激和可触发的记忆。其中我们使用热响应水凝胶与等离子体金纳米粒子和螺吡喃光酸作为模型。加热是导致热响应凝胶熔化的非条件刺激,而光(在特定波长下)最初会导致 pH 值降低,而不会因空间凝胶稳定而导致等离子体或结构变化。在热诱导凝胶熔化下,光会导致 pH 值降低和金纳米粒子链状聚集,从而产生新的等离子体响应。因此,同时加热和光照可以对新衍生的刺激进行条件作用,其中的逻辑图类似于巴甫洛夫条件作用。所示的组件展示了当尺寸和分散性受控时使用胶体可实现的不同功能。■ 主要参考文献
在时间范围内不断向后回滚的地方(通常称为“退缩的地平线控制”)。即使MPC控制器按定义依赖于系统模型,模型参数中的某些不确定性或预测外部干扰时的不确定性可以通过状态反馈循环来补偿,该状态反馈循环在随后的最佳最佳控制问题中适应实际系统响应。在优化工业过程(Bordons&Camacho,1998)和交通流量(Ferrara等,2015)中,可以找到许多MPC应用,其中控制器用于应对时间变化的参数和不断发展的边界条件。MPC对于风电场的协调至关重要(Vali等,2019),这会在风向上永久变化。基于MPC的控制器也证实了它们在自动驾驶中的效率,在该自动驾驶中,车辆面临动态障碍(Babu等,2018)。在结构控制中,大多数MPC控制器都依赖于预测外部激发力演化的专门设计的动态模型。Oveisi等。 (2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。 该方法已成功验证了受谐波干扰的压电层压梁的验证。 Wasilewski等人。 (2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。 (2007)。Oveisi等。(2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。该方法已成功验证了受谐波干扰的压电层压梁的验证。Wasilewski等人。(2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。(2007)。在Zelleke和Matsagar(2019)中,开发了一种基于能量的预测控制算法,以抑制受风激发的多局建筑物的振动。Yuen等人提出了一种基于概率的鲁棒性控制方法来减轻暴露于不确定激发的细长建筑物的振动的替代方法。在Takacs和Rohal'-Ilkiv(2014)中测试了五种最佳和次优MPC方法,以确定它们的构成复杂性和在线启动的能力,以减轻配备Piezoce-Ramic Control设备的自由,稳态和短暂振动。作者观察到最佳和次优策略之间的控制绩效没有显着多样性。他们建议在计算上有效的次优方法(例如,最低时间显式或牛顿– Raphson的MPC)可以用于较大维度的系统而不会大大损失性能的系统。
在聚合物中,在单个水平和链之间的链条折叠和聚集之间的竞争可以确定此类材料的机械,热和导电性能。了解折叠和聚集的相互作用为开发和发现具有量身定制性能和功能的聚合物材料提供了重要的机会。对于常规共价聚合物的非共价对应物也是如此,即,超分子聚合物(SPS)。sps有望用作新型刺激响应性聚合物材料的实际应用。大多数SPS具有单调的一维线性结构,该结构倾向于引起链链聚集,但是很少有SPS的报道可以通过主链折叠形成各种高阶结构。既展示了内部折叠和链链聚合的SP的开发,将为创建新型SP材料提供新的指南,其特性可以由高阶结构控制。最近发表在2024年7月25日在美国化学学会杂志上发表的一项研究报告了一种新的折叠SP,该SP自发进行链链聚集并转化为结晶骨料。借助原子力显微镜(AFM),研究小组证明了展开与聚集之间的关系。这项研究是由Chiba University的Shiki Yagai教授领导的,他是Chiba University科学与工程研究生院的博士课程学生Kenta Tamaki,是第一作者。 “最初,我们发现了一种单体结构,该结构以螺旋形形状聚合。这次,我们部分改变了驱动单体聚合以研究单体聚合物关系的单位结构。令我们惊讶的是,我们观察到了一种现象,螺旋自发地展开,而不同的链条捆在一起。然后,我们合并了一个可相关的分子,以便通过光线通过“任意时机”出现这种“自发”现象,这为我们的研究提供了背景,” Yagai教授说,这项研究背后的灵感。为设计新系统,该团队选择了可扭曲的二苯基和光反应偶氮苯单元作为核心,将其自组装到所需的SPS中。最初以折叠状态形成的SP慢慢地以内部分子顺序进行重排超过半天,并汇总到结晶状态。将偶氮苯单元纳入SPS导致了光诱导的展开,这通过松动折叠环之间的内部稳定来显着加速了这一过程。研究人员观察到,当将折叠的SP溶液保持在20 O C下几天时,聚合物会自发进行结构过渡并沉淀。使用AFM可视化沉淀物时,他们观察到了独特的中间状态,在通往统一的直纤维结构的途中,似乎是弯曲链的结合。这个有趣的图像使研究人员想起了蛋白质折叠不折叠的生物系统中经常观察到的链链聚集,从而导致淀粉样蛋白纤维形成。此外,该团队揭示了这种结构转型背后的原因。这包括由于双苯基单元的构象变化而导致的分子内顺序
添加剂制造/合金设计和材料选择的材料和过程简介。。。。。。。。。3 Rachel Boillat,Sriram Praneeth Isanaka和密苏里州科学技术大学传统合金系统的Frank Liou。。。。。。。。。。。。。。。。。。。。。。。。。。3增材制造过程。。。。。。。。。。。。。。。。。。。。5使用增材制造的加工性。。。。。。。。。。。。。8材料微结构,缺陷以及对机械行为的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8定制合金的开发。。。。。。。。。。。。。。。。。。融合金属添加剂制造中的11个过程结构关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Michael Kirka,橡树岭国家实验室缺陷结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16热签名。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个标准结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个位点特定的微观结构控制。。。。。。。。。。。。。。。。。。19其他因素影响结构。。。。。。。。。。。。。。。。。。。金属添加剂制造中的20种结构 - 核关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 23疲劳特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 24测试栏属性适用于组件性能。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 26与传统制造相比。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23疲劳特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24测试栏属性适用于组件性能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26与传统制造相比。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。金属添加剂制造中的26个过程缺陷。。。。。。。。。。。。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30激光定向 - 能源沉积。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36粘合剂喷射。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41过程优化。 。 。 。 。 。 。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。。。。。。。。。。。。。。。。。。。。。。。。。30激光定向 - 能源沉积。。。。。。。。。。。。。。。。。。。36粘合剂喷射。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41过程优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53种方法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55方法库存。 。 。 。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。。。。。。。。。。。。。。。。。。53种方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55方法库存。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56闭环反馈控制。。。。。。。。。。。。。。。。。。。。。57数据驱动的优化。。。。。。。。。。。。。。。。。。。。。。。。。57添加剂制造中的材料建模。。。。。。。。。。。。。。。60 Ashley D. Spear,犹他大学微观结构建模。。。。。。。。。。。。。。。。。。。。。。。。。。60个盲目建模挑战。。。。。。。。。。。。。。。。。。。。。。。。64个物理驱动与数据驱动的模型。。。。。。。。。。。。。64个用于金属添加剂制造的零件尺度工艺建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67固体力学模拟 - 放置应力和失真。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68微结构模拟。。。。。。。。。。。。。。。。。。。。。。。。。70分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。72