外泌体是纳米大小的运输生物车辆,通过在不同细胞之间交换遗传或代谢信息,在维持稳态中起着关键作用。外泌体在宿主和寄生虫之间转移有毒因素方面也可以起着至关重要的作用,从而调节宿主基因表达和免疫相。肿瘤与疾病发育的关联以及外泌体增强或减轻炎症途径的潜力支持外泌体有可能改变疾病进程的观念。目前正在进行探索外泌体在癌症,骨质疏松和肾脏,神经系统疾病中的作用的临床试验。值得注意的是,有关免疫相关疾病中外泌体签署效率的可用信息仍然难以捉摸且零星。在这篇综述中,我们讨论了免疫细胞衍生的外泌体及其在免疫疗法中的应用,包括针对自身免疫结缔组织疾病的外部疗法。此外,我们阐明了对免疫相关病理生理过程的主要问题的看法。因此,本综述中提供的信息突出了外来体作为有前途的策略和免疫调节的临床工具的作用。
Williams综合征(WS)是一种罕见的复杂神经发育障碍,是由染色体长臂上大约(28)基因的遗传微缺失引起的(7),特别是7q11.23 [1-4]。综合征患病率在7500个活产中的1范围内,达到20,000中的1个[5-7]。该疾病同样影响男性和女性[8]。最近,由于其独特的方面,WS引起了更多的关注,WS具有特定的身体,认知,医学和行为特征[8-10]。他们有一些医学问题,例如上腔主动脉瓣狭窄,结缔组织异常,包括疝气或膀胱或结肠的憩室,也具有独特的面部形态[10]。他们的大脑大小降低了顶叶和枕灰质。这些结果通过结构磁共振成像(MRI)表示[11]。尽管智力功能的差异很大,但大多数被诊断出患有轻度至中度认知障碍的WS个体[12]也表明,婴儿和幼儿表现出发育迟缓,在大多数情况下,年龄较大的孩子表现出学习或智力障碍。尽管智力障碍是智力障碍,但WS个人的口头技能相对保存[13,14]。,但它们具有更严重的视觉空间障碍[15,16],已收集了主要的威廉姆斯综合征特征:
随着大规模动物生产的当前环境影响以及对农场动物福利的关注,研究人员正在质疑我们是否可以为食品生产而培养动物细胞。本综述着重于细胞农业领域的关键方面:细胞。我们总结了目前用于开发培养肉类的农场动物的各种细胞类型的信息,包括间充质基质细胞,成肌细胞和多能干细胞。审查研究了每种细胞类型的优点和局限性,并考虑了选择适当的细胞来源以及影响细胞性能的细胞培养条件等因素。由于目前在培养的肉类中的研究旨在创建肌肉纤维来模仿肉的质地和营养谱,因此我们专注于细胞的肌源分化能力。用于此目的的最常用的细胞类型是成肌细胞或卫星细胞(SC S),但是鉴于它们的增殖能力有限,正在努力为间充质基质细胞(MSC S)和多能干细胞制定肌生成分化方案(PSC S)。后一种细胞类型的多能特征可能会使肉类中发现的其他组织(例如脂肪和结缔组织)产生。本综述可以帮助指导在培养的肉类发育的背景下选择细胞类型或培养条件。
简单总结:遗传性皮肤病是一种遗传性皮肤病,主要遵循单基因遗传模式。可遗传的结缔组织疾病,如经典的埃勒斯-丹洛斯综合征 (cEDS),属于这类人类罕见疾病,偶尔发生在其他物种中。本文报道了一头受影响的牛,其皮肤病变(包括皮肤松弛症)在临床和病理上与人类的 cEDS 相似。深层真皮的显微镜发现与胶原发育不良一致。全基因组测序 (WGS) 确定了 COL5A2 基因中最有可能致病的突变。已知 COL5A2 基因与小鼠和人类的显性遗传 cEDS 形式有关,但到目前为止,尚未发现它会在家畜中引起类似的表型。本文检查的疾病表型显示与母系中已识别的错义变异在两代中共同分离,很可能是由于自发突变事件造成的。牲畜中罕见的非致命疾病(如 cEDS)大多无法诊断,但可能会影响动物福利,从而降低受影响动物的价值。基于 WGS 的精确诊断可以了解罕见疾病,并支持对牛繁殖群体进行有害遗传疾病监测的价值。
在 Adacel Polio 上市后使用过程中,自发报告了以下其他不良事件。由于这些事件是来自人数不确定的群体的自发报告,因此无法可靠地估计其发生频率或与疫苗暴露之间的因果关系。这些事件很少被报告。血液和淋巴系统疾病:淋巴结肿大免疫系统疾病:过敏反应,如荨麻疹、面部水肿和呼吸困难。神经系统疾病:抽搐、血管迷走神经性晕厥、格林-巴利综合征、面瘫、脊髓炎、臂丛神经炎、接种肢体短暂性感觉异常/感觉减退、头晕 肌肉骨骼和结缔组织疾病:接种肢体疼痛 胃肠道疾病:腹痛 全身疾病和注射部位情况:不适、苍白、注射部位硬结 据报道,在接种 Adacel Polio 疫苗后,肢体大面积肿胀可能从注射部位延伸至一个或两个关节以外,并经常伴有红斑,有时伴有水泡。大多数这些反应在接种疫苗后 48 小时内出现,平均 4 天内自发消退,没有后遗症。风险似乎取决于之前接种 dTpa/DTPa 疫苗的剂量,接种第 4 剂和第 5 剂后风险更大。 疑似不良反应报告
Zip13的丧失导致Ehlers-Danlos综合征脊柱发育异常3型,涉及结缔组织发育不良,与肌肉强度降低相关。然而,Zip13在骨骼肌稳态中的作用,特别是在调节肌肉卫星细胞(MUSC)的情况下,仍然了解不足。在这项研究中,我们研究了Zip13-Knockout(KO)小鼠,发现Zip13-KO小鼠的MUSC降低,其中静止和激活的相位平衡被中断。为了阐明MUSC中Zip13表达的生理作用和动力学,我们生成了编码Zip13基因座GFP的Zip13-GFP敲入(KI)小鼠,这表明ZIP13有助于Quiescent和激活MUSC及其功能的相位平衡调节。的确,Zip13-KO小鼠从骨骼肌损伤中表现出延迟恢复,表明Zip13需要适当的骨骼肌再生。此外,在纯合Zip13-GFP Ki小鼠的MUSC中,GFP表达降低,其完整的Zip13表达受到干扰,这表明存在正反馈机制以维持Zip13表达。总的来说,我们的结果表明,Zip13可能通过自动调节Zip13表达来控制MUSC的静止/激活相平衡,从而积极参与骨骼肌肉再生,而新生成的Zip13-GFP Ki小鼠将有助于研究Zip13-3-3-GFP Ki小鼠的Zip13-3-3-3-3-3-epressects expecters表达细胞。
川崎病(KD)是一种全身性血管炎,影响了5岁以下的儿童。生命的早期以躯体增殖和免疫不成熟为特征,并具有主导的先天免疫系统。KD中冠状动脉并发症是儿童最常见的心脏病,但KD的诊断仍然取决于临床诊断标准。 光滑的红色嘴唇和结膜注射是使儿科医生能够对KD进行初始诊断的特征征兆;但是,几乎不知道为什么这些是如此的特征。 KD的诊断标准似乎散布在看似无关紧要的身体系统中,例如眼睛,嘴唇,皮肤和心脏。 KD被归类为结缔组织疾病。 最近,红细胞(RBC)已成为先天免疫反应中的重要调节剂。 据报道, RBC参与皮肤成纤维细胞中的细胞外基质重塑和上调基质金属蛋白酶(MMP)的表达。 此外,与纤维化相关的成纤维细胞生长因子和microRNA在KD中引起了人们的注意。 KD的基本符号出现在粘液粉交界处的边界。 头颈部区域在经历上皮到间质转变(EMT)的组织中很丰富。 间质性心脏炎和瓣膜功能不全以及冠状动脉病变可能使KD复杂化,并且这些病变存在于EMT源自心外膜祖细胞的组织中。 kd几乎没有在躯体生长和免疫成熟的成年人中呈现。冠状动脉并发症是儿童最常见的心脏病,但KD的诊断仍然取决于临床诊断标准。光滑的红色嘴唇和结膜注射是使儿科医生能够对KD进行初始诊断的特征征兆;但是,几乎不知道为什么这些是如此的特征。KD的诊断标准似乎散布在看似无关紧要的身体系统中,例如眼睛,嘴唇,皮肤和心脏。KD被归类为结缔组织疾病。最近,红细胞(RBC)已成为先天免疫反应中的重要调节剂。RBC参与皮肤成纤维细胞中的细胞外基质重塑和上调基质金属蛋白酶(MMP)的表达。此外,与纤维化相关的成纤维细胞生长因子和microRNA在KD中引起了人们的注意。KD的基本符号出现在粘液粉交界处的边界。头颈部区域在经历上皮到间质转变(EMT)的组织中很丰富。间质性心脏炎和瓣膜功能不全以及冠状动脉病变可能使KD复杂化,并且这些病变存在于EMT源自心外膜祖细胞的组织中。kd几乎没有在躯体生长和免疫成熟的成年人中呈现。回顾了有关KD的最新研究,我们认为KD的迹象存在着角质化和非角化分层的分层鳞状上皮之间的边界,在这种情况下,EMT仍在进行快速的体细胞增长中,其中RBC招募了RBC作为先天性免疫反应,并预防Mucosa中过度纤维化的纤维化。在这篇综述中,我们试图解释KD临床表现的原因,并在KD儿童的体细胞增长和免疫系统成熟期间在EMT的角度寻找诊断线索之间的联系。
肥厚性心肌病(HCM)是一种心脏肌肉疾病,其特征是左心室通常不对称异常肥大,没有异常负荷条件(例如高血压或瓣膜心脏病)[1]。HCM是一种常染色体 - 遗传性心肌病,在30%–60%的病例中鉴定出编码肉瘤蛋白的基因中的突变[1]。这种遗传突变的存在载有超过2倍的心室心律风险。遗传和心肌底物,包括纤维化,心室肥大和微血管缺血,起着心律失常决定因素的作用[1]。心肺运动测试似乎改善了当代SCD风险分层的策略[2-4]。但是,针对HF和心肌病的新药的开发应集中于对心肌细胞,冠状动脉微循环和心肌间质的直接影响。对肾小球和心肌细胞生物学的详细知识至关重要[5]。心肌间质是心肌内的精致和活跃的微疗法[6]。HF纤维化的纤维化变化和毛细血管近的纤维化变化由细胞外基质(ECM)膨胀和I型胶原蛋白的肌纤维细胞分泌[5]。一种心脏磁共振成像技术,T1映射,在人心肌中测量了细胞体积的分数[ECV],可以区分间质(心肌细胞和结缔组织)的不同成分,并具有更精确的心肌纤维化定义[5]。
成纤维细胞生长因子(FGFS)在各种信号通路内充当信号分子,从而调节了软结缔组织,神经,上皮组织和骨骼的产生,迁移和分化。FGF家族由22个成员组成,具有酸性成纤维细胞生长因子(AFGF/ FGF-1)和基本成纤维细胞生长因子(BFGF/ FGF-2)的主要意义。本文探讨了不同FGF的生化和生物学特性,从而阐明了它们在各种生物过程中的作用。Additionally, it delves into the interactions between FGFs and Re- ceptor tyrosine kinases (RTKs), which activate several cell signaling cascades, such as the RAS/MAPK (Mitogen-activated Protein Kinase) pathway, PI3K (phosphoinositide 3-kinase)/AKT (v-akt murine thymoma viral oncogene homolog) path- way, PLC-γ(磷脂酶C-γ)途径以及转录(STAT)途径的信号转换器和激活因子,以促进多种细胞功能。本文还研究了工程FGF的方法,包括N端截断,点突变或其组合,用于在组织再生,血管生成和修复受损的组织(例如软骨,骨骼,骨,韧带和皮肤)中的治疗应用。最后,它以讨论FGF的输送系统的讨论,包括脚手架,水凝胶以及纳米和微观局促方法。关键字:血管生成,工程FGF,成纤维细胞生长因子,RAS/MAP激酶途径,组织再生
物理治疗师在治疗肌肉骨骼疾病患者时经常使用各种干预措施。近年来,干针疗法在治疗骨骼肌、筋膜、神经系统和结缔组织疾病方面越来越受欢迎,它通过机械破坏组织而不使用任何注射剂。这种技术可以减轻疼痛、缓解损伤并减少活动限制。必须不断评估有关其有效性的证据以及治疗师所需的技能。几项系统评价的结果表明,与其他治疗方法(如假治疗或安慰剂)相比,干针疗法在短期内(治疗的前 12 周)增强功能和减轻肌肉骨骼疾病疼痛方面具有更大的潜力。有几种技术与干针疗法进行了比较,包括用于治疗慢性肌筋膜颈部不适的软组织手术、上斜方肌触发点压力、肌筋膜疼痛的拉伸、用于治疗肩部疾病的术后物理治疗以及用于治疗不稳定踝关节的本体感受/强化锻炼。在减轻疼痛和实现功能目标方面,干针疗法的长期证据不足。进一步评估干针疗法对肌肉骨骼疾病的有效性需要更多严谨的研究和前瞻性研究。多项研究表明,干针疗法可以减轻肌肉骨骼不适并在短期内增强功能效果,因此可作为肌肉骨骼疾病患者的一种有价值的治疗方法。