本综述评估了用于研究怀孕期间母体影响如何影响后代小胶质细胞(中枢神经系统的免疫细胞)发育的体外模型。所研究的模型包括原代小胶质细胞培养物、小胶质细胞系、iPSC 衍生的小胶质细胞、PBMC 诱导的小胶质细胞样细胞、源自 iPSC 的 3D 脑器官和霍夫鲍尔细胞。我们将评估每种模型复制发育大脑体内环境的能力,重点关注其优势、局限性和实际挑战。重点介绍了可扩展性、遗传和表观遗传保真度以及生理相关性等关键因素。小胶质细胞系具有高度可扩展性,但缺乏遗传和表观遗传保真度。iPSC 衍生的小胶质细胞提供中等的生理相关性和患者特异性遗传见解,但面临着重编程固有的操作和表观遗传挑战。源自 iPSC 的 3D 脑类器官为研究复杂的神经发育过程提供了先进的平台,但需要大量资源和技术专长。霍夫鲍尔细胞是位于胎盘中的胎儿巨噬细胞,与小胶质细胞具有共同的发育起源,它们独特地暴露于产前母体因素,并且根据胎儿屏障成熟度表现出不同的表观遗传保真度。这使得它们特别适用于探索母体对小胶质细胞发育胎儿编程的影响。该综述的结论是,没有一个模型能够全面捕捉母体对小胶质细胞发育的所有方面的影响,但它提供了根据特定研究目标和实验限制选择最合适模型的指导。
MBNL1调节再生和差异性心脏状态之间编程的后产后切换。Logan R.J. Bailey 1,3,4,Darrian Bugg 1,Isabella M. Reichardt 2,C。DessiréeOrtaç1,Jagadambika Gunaje 1,Richard Johnson 5,Michael J. Maccoss 5,Tomoya Sakamoto 6,Tomoya Sakamoto 6,Daniel P. Kelly P. Kelly 6,Michael Regnier 2,7,Michael Regnier 2,7,Jennerifer M.Davis 1,2,7*。 1个实验室医学与病理学,华盛顿大学西雅图,华盛顿大学。 2 Bio Gradineering,华盛顿大学西雅图,华盛顿州。 3分子和细胞生物学,华盛顿大学西雅图,华盛顿大学。 4医学科学家培训计划,华盛顿大学西雅图,华盛顿大学。 5基因组科学,华盛顿大学,西雅图,华盛顿州西雅图6心血管研究所,医学,宾夕法尼亚州宾夕法尼亚大学,宾夕法尼亚州宾夕法尼亚州。 7华盛顿州西雅图市华盛顿大学转化肌肉研究中心 *对应:jendavis@uw.edu摘要发现心肌细胞的成熟度的决定因素和差异化状态的维持对于理解发展和可能重新研究成人哺乳动物心脏作为治疗策略的内源性再生计划至关重要。 在这里,RNA结合蛋白肌肉闪烁1(MBNL1)被确定为心肌细胞分化状态的关键调节剂及其通过对RNA稳定性的转录组控制的再生潜力。 在发育过早过渡的心肌细胞早期,靶向MBNL1过表达,向肥厚性生长,发育不全和功能障碍,而MBNL1功能的丧失会增加心肌细胞周期的进入和通过改变细胞周期抑制剂转录物的扩散。Logan R.J. Bailey 1,3,4,Darrian Bugg 1,Isabella M. Reichardt 2,C。DessiréeOrtaç1,Jagadambika Gunaje 1,Richard Johnson 5,Michael J. Maccoss 5,Tomoya Sakamoto 6,Tomoya Sakamoto 6,Daniel P. Kelly P. Kelly 6,Michael Regnier 2,7,Michael Regnier 2,7,Jennerifer M.Davis 1,2,7*。1个实验室医学与病理学,华盛顿大学西雅图,华盛顿大学。2 Bio Gradineering,华盛顿大学西雅图,华盛顿州。 3分子和细胞生物学,华盛顿大学西雅图,华盛顿大学。 4医学科学家培训计划,华盛顿大学西雅图,华盛顿大学。 5基因组科学,华盛顿大学,西雅图,华盛顿州西雅图6心血管研究所,医学,宾夕法尼亚州宾夕法尼亚大学,宾夕法尼亚州宾夕法尼亚州。 7华盛顿州西雅图市华盛顿大学转化肌肉研究中心 *对应:jendavis@uw.edu摘要发现心肌细胞的成熟度的决定因素和差异化状态的维持对于理解发展和可能重新研究成人哺乳动物心脏作为治疗策略的内源性再生计划至关重要。 在这里,RNA结合蛋白肌肉闪烁1(MBNL1)被确定为心肌细胞分化状态的关键调节剂及其通过对RNA稳定性的转录组控制的再生潜力。 在发育过早过渡的心肌细胞早期,靶向MBNL1过表达,向肥厚性生长,发育不全和功能障碍,而MBNL1功能的丧失会增加心肌细胞周期的进入和通过改变细胞周期抑制剂转录物的扩散。2 Bio Gradineering,华盛顿大学西雅图,华盛顿州。3分子和细胞生物学,华盛顿大学西雅图,华盛顿大学。4医学科学家培训计划,华盛顿大学西雅图,华盛顿大学。5基因组科学,华盛顿大学,西雅图,华盛顿州西雅图6心血管研究所,医学,宾夕法尼亚州宾夕法尼亚大学,宾夕法尼亚州宾夕法尼亚州。 7华盛顿州西雅图市华盛顿大学转化肌肉研究中心 *对应:jendavis@uw.edu摘要发现心肌细胞的成熟度的决定因素和差异化状态的维持对于理解发展和可能重新研究成人哺乳动物心脏作为治疗策略的内源性再生计划至关重要。 在这里,RNA结合蛋白肌肉闪烁1(MBNL1)被确定为心肌细胞分化状态的关键调节剂及其通过对RNA稳定性的转录组控制的再生潜力。 在发育过早过渡的心肌细胞早期,靶向MBNL1过表达,向肥厚性生长,发育不全和功能障碍,而MBNL1功能的丧失会增加心肌细胞周期的进入和通过改变细胞周期抑制剂转录物的扩散。5基因组科学,华盛顿大学,西雅图,华盛顿州西雅图6心血管研究所,医学,宾夕法尼亚州宾夕法尼亚大学,宾夕法尼亚州宾夕法尼亚州。 7华盛顿州西雅图市华盛顿大学转化肌肉研究中心 *对应:jendavis@uw.edu摘要发现心肌细胞的成熟度的决定因素和差异化状态的维持对于理解发展和可能重新研究成人哺乳动物心脏作为治疗策略的内源性再生计划至关重要。在这里,RNA结合蛋白肌肉闪烁1(MBNL1)被确定为心肌细胞分化状态的关键调节剂及其通过对RNA稳定性的转录组控制的再生潜力。在发育过早过渡的心肌细胞早期,靶向MBNL1过表达,向肥厚性生长,发育不全和功能障碍,而MBNL1功能的丧失会增加心肌细胞周期的进入和通过改变细胞周期抑制剂转录物的扩散。此外,与雌激素相关受体信号轴MBNL1依赖性稳定轴对于维持心肌细胞成熟至关重要。根据这些数据,调节MBNL1剂量调整了心脏再生的时间窗口,在该窗口中,增强的MBNL1活性使肌细胞增殖产生了,MBNL1的缺失促进了肌细胞增殖延长的再生状态。总的来说,这些数据表明MBNL1在产后和整个成年期之间充当整个再生和成熟的心肌细胞状态之间的转录组切换。关键字心脏再生,心肌分化,产后发育,转录组稳定,RNA成熟
量子计算机原则上可以在基于现代计算基础架构的某些关键任务上优于常规计算机。实验量子计算处于早期阶段,现有设备尚不适合实用计算。然而,在学术界和工业中,几个研究人员现在都在构建量子计算机(例如,参见[2,12,17])。量子计算还为编程语言社区提出了许多具有挑战性的问题[18]:我们应该如何设计用于量子计算的编程语言?我们应该如何编译和优化量子程序?我们应该如何测试和验证量子程序?我们应该如何理解量子编程语言的语义?在本文中,我们专注于使用依赖线性的功能语言原始Quipper-D进行量子电路编程。量子力学的无键属性指出,通常不能复制量子的状态。许多现有的量子编程语言,例如Quipper [10,11],Qiskit [22],Q#[28],CIRQ [5]或ProjectQ
摘要。将编程和信息学概念介绍给下一代计算机科学家至关重要。本经验报告详细介绍了为期两天的Informatics研讨会,适用于134名奥地利小学生,年龄在11至13岁之间。研讨会计划包括有关算法,人工智能,机器人技术和编码以及基于块的程序MING的几项未插入活动,并使用Scratch和Sphero Bolt组成。我们评估了110名参与者对这两天的经验的反馈。许多孩子报告了知识的显着增长。我们还将详细解释学生最喜欢的活动和教育概念。本报告还涵盖了过去两天的十个研讨会领导者的经验。研讨会被广泛接受,参与者报告对计算机科学产生了浓厚的兴趣。
功能分级的材料(FGM)在无机热电学的背景下被广泛探索,但尚未在有机热电学中进行。在这里,研究了掺杂梯度对化学掺杂共轭聚合物的热电特性的影响。柜台的平面漂移用于中等电场中,用于在由寡聚侧链的聚噻吩中创建侧向掺杂梯度,并用2,3,5,5,6-Tetra-fuoro-tetra-tetra-fuoro-tetrace-tetrachachacyanoquinainoimeneimetimethane(f 4 tcnq)(F 4 TCNQ)。拉曼显微镜表明,在50μm宽的通道上的偏置电压仅为5 V,足以触发反逆漂移,从而导致掺杂梯度。分级通道的有效电导率随偏置电压降低,而观察到Seebeck系数的总体增加,可产生高达八倍的功率因数。动力学蒙特卡洛模拟分级纤维的模拟解释了在高电导率下,在高电导率下seebeck系数的掷骰,以及由于高掺杂剂浓度下的库仑散射而增加的迁移率。因此,发现FGM概念是提高尚未最佳掺杂的有机半导体的热电性能的一种方式,这可以减轻新材料的筛选以及设备的制造。
本文展示了科学家和工程师如何使用 ChatGPT 和 GitHub Copilot 等现代人工智能 (AI) 工具来学习与他们的工作相关的计算机编程技能。它首先总结了人工智能工具已经可以帮助人们学习编程的常见方式,然后介绍了六个满足科学家和工程师需求的新机会:1) 为自己的工作领域创建定制的编程教程,2) 学习复杂的数据可视化库,3) 学习将探索性代码重构为更易于维护的软件,4) 了解继承的遗留代码,5) 在工作流程中按需学习新的编程语言,6) 质疑科学代码所做的假设。总而言之,这些机会指向未来,人工智能可以帮助科学家和工程师在现有的现实世界工作流程中按需学习编程。
摘要:在现代计算科学中,机器学习和优化过程之间的相互作用标志着最重要的发展。优化在机械工业中起着重要作用,因为它可以降低材料成本、减少时间消耗并提高生产率。最近的工作重点是对搅拌摩擦焊接工艺进行优化任务,以获得搅拌摩擦焊接接头的最大极限抗拉强度 (UTS)。为此选择了两种机器学习算法,即人工神经网络 (ANN) 和决策树回归模型。输入变量为工具转速 (RPM)、工具移动速度 (mm/min) 和轴向力 (KN),而输出变量为极限抗拉强度 (MPa)。观察到,在人工神经网络的情况下,训练和测试集的均方根误差分别为 0.842 和 0.808,而在决策树回归模型的情况下,训练和测试集的均方根误差分别为 11.72 和 14.61。因此,可以得出结论,ANN 算法比决策树回归算法提供更好、更准确的结果。
这是“作者接受的手稿”版本的版本:Finnah,Benedikt /Gönsch,Jochen(2021)使用倒退近似动态编程优化风力发电厂的交易决策。国际生产经济学杂志,238,108155。最终文章版本(记录的版本)可在以下网址获得:https://doi.org/10.1016/j.ijpe.2021.108155
摘要 - 以进一步实现机器人操作中有意影响的目的,呈现了一个控制框架,呈现了directlytacklestheChalgesthAllengesposedbybytracking-tracking-tracking-trol tracking-troct-trol trol tracking-trol torl of机器人操纵剂,这些操作机构被任命执行同时同时产生影响。该框架是参考扩展(RS)控制框架的扩展,其中定义了与影响动态一致的反对和后影响引用。在这项工作中,从基于远距离的方法开始构建了这样的参考。通过在二次编程控制方法范围内使用相应的撞击和后影响控制模式,在保持高跟踪性能的同时,避免了速度误差的峰值和由于影响引起的控制输入。包含新型的临时模式,我们还旨在避免在环境中的不确定性导致一系列计划外的单个影响发生时发生的输入峰和步骤,而不是计划的同时影响。这项工作尤其是在第一次对机器人设置的RS控制的实验评估,与三种基线控制方法相比,它对环境中的不确定性进行了鲁棒性。
与肿瘤相关的巨噬细胞摄取的病毒摄取可能会显着降低癌细胞感染的溶瘤病毒的可用性,并限制治疗功效。通过计算模型,我们假设编码诸如IFN-γ之类的T细胞刺激信号的溶瘤病毒都可以增强功效,而与巨噬细胞无关。为了测试这一点,我们设计了一个基于α病毒的复制子,表达IFN-γ,并研究了其在各种肿瘤免疫共培养系统中的作用。虽然α病毒复制子在巨噬细胞中不复制,但巨噬细胞很容易吸收病毒,以频率依赖性但非表型独立的方式限制肿瘤感染。然而,病毒摄取激活促炎反应,通过表达病毒编码的IFN-γ的相邻癌细胞进一步增强。因此,即使被感染的肿瘤细胞表达IFN-γ,无论巨噬细胞的存在,频率或表型如何,也可以确保T细胞激活。这些发现提出了一种通过设计可以刺激T细胞激活的病毒来优化高巨噬细胞浸润的肿瘤病毒疗法的策略,从而确保了治疗功效。