(C) 理论物理专业(至少 12 个学分) 1. 等离子体物理 PYL657 [3-0-0],3 2. 高级等离子体物理 PYL659 [3-0-0],3 3. 高级凝聚态理论 PYL740 [3-0-0],3 4. 场论和量子电动力学 PYL741 [3-0-0],3 5. 广义相对论和入门天体物理学 PYL742 [3-0-0],3 6. 群论及其应用 PYL743 [3-0-0],3 7. 高能物理 PYL744 [3-0-0],3 8. 高级统计力学 PYL745 [3-0-0],3 9. 非平衡统计力学及其跨学科应用 PYL746 [3-0-0],3 10. 量子光学 PYL748 [3-0-0],3 11. 量子信息与计算 PYL749 [3-0-0],3
摘要 金属卤化物钙钛矿基纳米结构、纳米片和纳米颗粒处于最前沿,具有吸引人的光电特性,适用于光伏和发光应用。因此,全面了解这些基本的电子和光学特性是充分利用此类半导体技术的关键一步。迅速发展的化学工程及其不同寻常的结构多样性令人着迷,但对于与传统半导体相媲美的合理描述也具有挑战性。从这个意义上说,基于群论的对称性分析提供了一种通用而严格的方法来理解各种块体钙钛矿和钙钛矿基纳米结构的性质。在本文中,我们使用群论中的对称性分析回顾了金属卤化物钙钛矿半导体的电子和光学响应,回顾了 AMX 3 块体钙钛矿的典型立方 Pm-3m 晶格的主要结果(其中 A 为阳离子,M 为金属,X 为卤化物),然后将分析扩展到三种技术感兴趣的情况:AMX 3 纳米粒子、A 4 MX 6 孤立八面体、A 2 MX 4 层状系统和最近引入的缺陷卤化物钙钛矿 (d-HP)。基于对称性论证,我们将强调这些材料的电子和光学特性的相似性和差异性,这是由空间限制和维数引起的。同时,我们将利用这种分析来讨论文献中的最新结果和争论,如钙钛矿纳米粒子和纳米片的带边激子精细结构中暗/亮态的能量学。从目前的工作中,我们还预测 d-HP 的带边激子精细结构不会呈现光学暗状态,与 AMX 3 纳米粒子和层状钙钛矿形成鲜明对比,这一事实可能对这些新型钙钛矿的光物理产生重要影响。
这里,我们考虑一个变分族,其动机是广义群论相干态 [36] 的概念,它扩展了乘积态 Ansatz,引入了更丰富的纠缠结构。这些状态的特殊结构使我们能够引入非平凡的量子关联,同时保留有效计算变分基态的能力,最大系统规模为 N ¼ 200 个自旋。我们还开发了一种研究基态纠缠结构的方法。我们的结果显示了纠缠的体积定律,这表明尽管 QSK 模型涉及所有自旋相互作用,但纠缠一夫一妻制并不提供缩放约束。此外,这种纠缠结构也在量子信息背景下引入的一组状态中得到识别,即
[*注:3901/3902/3903 中的任意一门核心课程] CHE-NEIST-2-3901*(核心课程)(任意一门)高级物理化学:2-0-0-2 热力学和化学动力学、量子力学、原子结构和光谱、双原子中的化学键、群论的化学应用、胶体和表面科学、表面活性剂、界面和界面特性、电化学。 CHE-NEIST-2-3902* (核心) (任意一门) 高级无机化学:2-0-0-2 无机化合物的结构与键合、配位化合物化学、化学与群论中的对称性、主群化学、有机金属化学、过渡金属化合物的电子光谱、磁化学、金属簇化合物、无机反应机理、金属配合物中的电子转移反应、生物无机化学(金属酶、作为氧载体的金属配合物、光合作用)、药物化学中的金属配合物、无机配合物催化作用。 CHE-NEIST-2-3903* (核心) (任意一门) 高级有机化学:2-0-0-2 立体化学、反应机理、CC 和 CX 键形成、逆合成分析、光化学、周环反应、反应中间体、不对称合成方法及其在全合成中的应用、氧化还原反应、有机催化、复分解反应。CHE-NEIST-2-3904 (选修) 高级分析化学:2-0-0-2 分析仪器、信号和噪声、光学分析方法概述:光学仪器组件、基于吸收、发射和散射的原子和分子光谱、电分析技术(基础电化学、伏安法、电位法)、分析分离和色谱法简介、GC、LC、质谱、电迁移技术、联用技术、检测器、石油精炼分析工具。 CHE-NEIST-2-3905(选修)高级有机金属化学:2-0-0-2 基础知识、18 价电子规则;使用分子轨道理论进行有机金属配合物的结构和键合。σ-供体配体:
到目前为止,尽管之前已经提出了数学理论[9]- [13],但破译生命密码[1]- [8]——遗传密码——仍未成功。我们的新尝试与之前的尝试有何不同?我们的数学方法处于有限群论和量子信息的交叉点,与其他主要致力于量子计算[14]但也关注基本粒子[15]的论文一样。生命细胞在有丝分裂过程中需要一种称为脱氧核糖核酸(或DNA)的大分子,它被包装在染色体中。但在DNA复制过程中或当其代码用于制造蛋白质时,DNA会解开并被复制。DNA是一种由两条平行的多核苷酸链组成的螺旋,携带4个含氮碱基中的遗传指令,用于所有生物体的生长和繁殖。遗传密码由三元组碱基组成,称为1
论文 平均标准差 考生人数 USM USM 高级流体动力学 6 65 19.8 高级物理哲学 - - - 高级量子场论 56 70 16.5 高级量子理论 27 72 14.0 代数几何 - - - 代数拓扑 2 - - 解析数论 1 - - 应用复变量 7 69 13.7 无碰撞等离子体物理 9 64 20.4 可微流形 13 65 20.1 论文(单学分) 19 76 - 论文(双学分) 34 80 - 广义相对论 I 51 64 13.6 广义相对论 II 34 63 16.2 几何群论 2 - - 地球物理流体动力学 1 - - 群与表示61 80 15.17 量子信息概论 37 72 17.3 动力学理论 5 61 22.4 低维拓扑结构与结点理论 - - - 网络 9 69 6.7 数值线性代数 5 72 13.4 微扰法 21 58 11.8 量子场论 79 67 15.0 辐射过程与高级工程天文 2 - - 随机矩阵理论 15 64 15.3 黎曼几何 4 - - 弦理论 I 45 73 4.5
采用随机策略结合群论、图论和高通量计算,系统地扫描了共87种新的单斜硅同素异形体。新的同素异形体中,13种具有直接或准直接带隙,12种具有金属特性,其余为间接带隙半导体。这些新型单斜硅同素异形体中有30多种表现出大于或等于80 GPa的体积模量,其中3种表现出比金刚石硅更大的体积模量。只有两种新的硅同素异形体表现出比金刚石硅更大的剪切模量。详细研究了所有87种Si单斜同素异形体的晶体结构、稳定性(弹性常数、声子谱)、力学性能、电子性能、有效载流子质量和光学性能。五种新的同素异形体的电子有效质量ml小于金刚石硅的电子有效质量。所有这些新型单斜硅同素异形体在可见光谱区都表现出强吸收。结合它们的电子带隙结构,这使它们成为光伏应用的有前途的材料。这些研究极大地丰富了目前对硅同素异形体的结构和电子特性的认识。
1949 年,戈莱(Golay)[1-4]发现了两种重要的纠错码。一种是二进制码,现用符号 1[24,12,8] 表示,由 2 12 = 4096 个 24 个字符(每个字符为 0 或 1)的码字组成,码字之间的最小距离为 2/8;另一种是三元码,用符号 [12,6,6] 表示,由 3 6 = 729 个 12 个字符(每个字符为 0、1 或 2)的码字组成,码字之间的最小距离为 6。3 在被发现后的几十年里,这些代码推动了编码理论和数学的重大进步。在编码理论中,戈莱码是唯一在有限域上可以纠正码字中多个错误的完美代码。 4 在数学中,二进制 Golay 码导致了 24 维 Leech 格子的发现 [5],这种格子提供了该维度上最密集的全同球体堆积 [6](已知的其他此类堆积的唯一维度是 8)。此外,在群论中,正如 Preskill [4] 所说,Golay 码启动了一系列事件,这些事件导致了上个世纪后期对有限群(特别是“零散”群)的完整分类。量子计算的出现以及由此产生的对量子纠错的兴趣,重新引起了人们对古典密码学的兴趣,因为人们意识到后者的许多结果可以改编并用于
双曲性由格罗莫夫 [ Gro87 ] 引入,是几何群论中最突出的负曲率概念,具有强大的代数和算法意义 [ Gro87 、 Pau91 、 DG11 、 Sel95 、 ECH ` 92 ]。许多重要的群都具有某些负曲率,但不是双曲的,包括群的自由积、映射类群、许多三维流形的基本群、某些阿廷群和克雷莫纳群。这一观察导致了对双曲群各种推广的研究,例如相对双曲群 [ Far98 、 Osi06 、 Bow12 ]、圆柱双曲群 [ Osi16 、 DGO17 ] 和 Morse 局部到整体 (MLTG) 群 [ RST22 ]。对于任何这些推广,很自然地会问它们满足负曲率的哪些方面。本文重点讨论 MLTG 群。MLTG 群的一个主要特征是在 [ RST22 ] 中引入的,它能够消除 Morse 测地线的病态行为。例如,如果一个 MLTG 群包含 Morse 测地线,则它有一个 Morse 元;如果它包含 Morse 元,则它有一个与 F2 同构的子群。这对于一般群来说并非如此 [ Fin17 , OOS09 ]。因此,很自然地,我们会问,消除病态行为是否足以确保圆柱双曲性。