摘要 由于其更好的强度重量比、可模塑性、抗断裂性以及能够使用当地材料,钢丝网水泥正成为一种越来越受欢迎的建筑材料。土聚物技术提供了一种环保的替代品,该技术使用碱性溶液来激活富含二氧化硅和氧化铝的材料。本研究重点研究土聚物基钢丝网水泥板,探索其弯曲性能并用土聚物砂浆替代水泥以提高性能。本研究调查了不同百分比的粉煤灰(范围从 0% 到 20%)、GGBS(范围从 80% 到 100%)和 2% 的纳米二氧化硅对钢丝网水泥土聚物混凝土性能的影响。使用碳纤维增强聚合物 (CFRP) 缠绕金属丝网测试弯曲行为。粉煤灰是煤电厂的副产品,与 GGBS 结合以提高强度和凝固性。采用 1:2 砂浆比,包含硅酸钠、氢氧化钠、GGBS 和粉煤灰。添加 80% GGBS 可获得最佳效果,尽管粉煤灰中 100% GGBS 的强度更高。纳米二氧化硅进一步提高了性能,1.5% 纳米二氧化硅和 80% GGBS 的强度显著提高 240%。研究最后确定了适合实际应用的优越组合,考虑到样品的渗透性、耐酸性和耐热性。
摘要:对 AISI-SAE AA7075-T6 铝合金进行了超声波和常规疲劳试验,以评估人工和诱导预腐蚀的效果。人工预腐蚀是通过在试样颈部沿试验试样的纵向或横向加工两个直径为 500 µ m 的半球形点蚀孔获得的。诱导预腐蚀是使用欧洲航天局的国际标准 ESA ECSS-Q-ST-70-37C 实现的。试样采用频率为 20 kHz 的超声波疲劳技术进行测试,采用频率为 20 Hz 的常规疲劳进行测试。两个施加的载荷比为:超声波疲劳试验中 R = − 1,常规疲劳试验中 R = 0.1。主要结果为人工和诱导预腐蚀对疲劳耐久性的影响,以及常规疲劳试验后的表面粗糙度变化。分析了裂纹萌生和扩展,并建立了数值模型来研究与预腐蚀坑相关的应力集中,以及从裂纹萌生到断裂的 I 型应力强度因子的评估。最后,获得了基材和横向有两个半球形坑的试样的应力强度因子范围阈值 ∆ K TH。
表观基因组编辑的耐久性在心血管疾病靶基因中存在很大差异 Madelynn N. Whittaker, 1,2 Lauren C. Testa, 1 Aidan Quigley, 1 Ishaan Jindal, 1 Saúl V. Cortez- Alvarado, 1 Ping Qu, 1 Yifan Yang, 1 Mohamad-Gabriel Alameh, 3,4 Kiran Musunuru 1,5 & Xiao Wang 1,5 1. 宾夕法尼亚大学佩雷尔曼医学院心血管研究所,宾夕法尼亚州费城 19104,美国 2. 宾夕法尼亚大学生物工程系,宾夕法尼亚州费城 19104,美国 3. 乔治梅森大学生物工程系,弗吉尼亚州费尔法克斯 22030,美国 4. 宾夕法尼亚大学佩雷尔曼医学院医学系传染病分部,宾夕法尼亚州费城 19104,美国 5. 心血管医学分部,宾夕法尼亚大学佩雷尔曼医学院医学系,宾夕法尼亚州费城 19104,美国 运行标题:心血管基因的表观基因组编辑 通讯作者
本作品由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,受美国能源部 (DOE) 委托,合同编号为 DE-AC36-08GO28308。本作品由耐用模块材料联盟 (DuraMAT) 提供资金,该联盟是一个能源材料网络联盟,由美国能源部能源效率办公室和可再生能源太阳能技术办公室根据协议 32509 资助。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,而出版商在接受文章发表时,即承认美国政府保留非独占、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
希望他们了解电池的特性并加深思考。特别要考虑二次电池的输出和耐用性、包括 DC/DC 转换器的电源管理、热管理以及蒸发产生的氧气的处理等。
系统最大输出功率 [kW] FC 和充电电池组合的最大输出功率。 FC 系统额定功率输出 [kW] FC 系统的额定功率输出(净输出)。 室外空气温度 [℃] 使用产品时的室外空气温度。 耐久性 [10,000 小时] 产品所需的耐久性。
这句话提供了关于疲劳界外人士对疲劳预测准确性的看法的有用见解。耐久性工程师面临的挑战不仅限于准确评估寿命。它还包括确定疲劳失效将在何时何地发生以及出于何种原因发生的要求。本文介绍了为什么这些挑战的答案更有可能来自耐久性过程背景下电信和互联网的最新进展,而不是疲劳建模技术的改进,因为这些进展可能是为了提高准确性而不是可用性和适用性。本文将讨论耐久性评估的必要性,并概述基本的疲劳方法。本文还将讨论这些技术在不同行业和过程中的应用。
功能测试 EN 54-18 PASS 性能和供电参数变化 EN 54-18 PASS 干热(运行) EN 54-18 PASS 寒冷(运行) EN 54-18 PASS 湿热,循环(运行) EN 54-18 PASS 湿热,稳定状态(耐久性) EN 54-18 PASS 二氧化硫 (SO2) 腐蚀(耐久性) EN 54-18 PASS 冲击(运行) EN 54-18 PASS 撞击(运行) EN 54-18 PASS 振动,正弦(运行) EN 54-18 PASS 振动,正弦(耐久性) EN 54-18 PASS 电磁兼容性 (EMC) 抗扰度测试 EN 54-18 PASS
完整作者列表: Regmi, Yagya;劳伦斯伯克利国家实验室, Peng, Xiong;劳伦斯伯克利国家实验室 Fornaciari, Julie;劳伦斯伯克利国家实验室;加州大学伯克利分校,化学与生物分子工程 Wei, Max;劳伦斯伯克利国家实验室 Myers, Deborah;阿贡国家实验室,化学科学与工程部 Weber, Adam;劳伦斯伯克利国家实验室,能源技术领域 Danilovic, Nemanja;劳伦斯伯克利国家实验室,能源存储与分布式资源
