摘要 国际玉米和小麦改良中心 (CIMMYT) 及其合作伙伴正在努力应用 CRISPR 技术实现珍珠粟种子产品设计的重大变革:改变脂肪酸代谢以实现不腐臭特性,从而创造出磨成面粉后保质期更长的谷物。肯尼亚是一个监管环境允许引入源自定点核酸酶 1 和 2 衍生技术的基因编辑种子产品的国家。市场情报旨在解答这个问题:如果肯尼亚有这样的种子产品,对小米种植和价值链有何潜在意义?本简报通过研究小米的生产、加工和销售背景以及农民、消费者和加工商的相关期望和要求来探讨这个问题。数据是通过采访小米农民(n=35)和农村消费者(n=35)、当地加工商(n=14)、贸易商(n=3)和面粉生产商(n=6)收集的。价值链参与者报告称,腐臭是一个问题,但这并不是主要挑战。腐臭被与缺乏任何类型的改良种子、产量低和收获后挑战相关的更大挑战所掩盖。延长保质期的小米种子产品能否产生影响取决于改变对小米面粉商业机会的期望(例如面粉混合政策)以及建立可行的高性能种子系统,新品种可满足农民的需求,例如高产、耐旱和抗鸟。本简报最后介绍了非腐臭小米如何产生大规模影响的未来情景。
杂草可以告诉您很多有关草坪状况的信息,并表明您需要做些什么才能种植出天然抗杂草和害虫的健康草。学会“读懂杂草”,了解它们对您的草坪护理方法和土壤条件的影响,这样您就可以创建健康的草坪,从长远来看,这将减少工作量。杂草在土壤压实、施肥不足、pH 值不平衡以及浇水、播种或修剪不当的草坪中茁壮成长。读懂杂草其实非常简单。使用下表识别草坪中的杂草,并根据以下信息纠正促进杂草生长的条件。例如,一年生蓝草通常表明土壤压实和浇水过多。曝气和适当的灌溉将纠正促进蓝紫色生长的条件。请记住,许多被视为杂草的植物具有有益的特性。尝试培养对某些杂草的耐受性。例如,三叶草被认为是一种典型的草坪杂草,它从大气中吸收游离氮并将其分布到草中,从而帮助草生长。三叶草根系广泛且极耐旱,为土壤生物提供重要资源,而且在草坪自然休眠后,三叶草仍能长时间保持绿色。马唐草可控制侵蚀;蒲公英的深根可将养分返回地表;而芭蕉是可食用的!
干旱是全球农业损失的主要原因,对粮食安全构成重大威胁。目前,植物生物技术是开发能够在缺水条件下高产作物的最有前途的领域之一。通过对拟南芥整株植物的研究,已经发现了对干旱胁迫的主要反应机制,并且已经将多种抗旱基因改造到作物中。到目前为止,大多数抗旱性增强的植物都表现出作物产量下降,这意味着仍然需要寻找能够将抗旱性与植物生长分离开来的新方法。我们实验室最近发现,油菜素内酯 (BR) 激素的受体使用组织特异性途径介导根生长过程中的不同发育反应。在拟南芥中,我们发现增加维管植物组织中的 BR 受体可以赋予植物抗旱性而不会损害其生长,这为研究赋予植物细胞特异性抗旱性的机制提供了绝佳的机会。在本综述中,我们概述了最有希望的表型干旱特征,这些特征可以通过生物技术加以改进,以获得耐旱谷物。此外,我们还讨论了当前的基因组编辑技术如何帮助识别和操纵可能赋予抗旱胁迫能力的新基因。在未来几年,我们期望通过共同努力,找到在缺水环境中提高作物产量的可持续解决方案。
摘要:干旱是对全球玉米产量的严重负面影响的主要非生物压力之一。了解玉米中干旱耐受性的遗传结构是朝着繁殖耐旱的品种和针对性的遗传资源剥削的关键步骤。在这项研究中,与谷物产量成分,开花时间和植物形态有关的511定量性状基因座(QTL)在干旱条件下以及干旱耐受性指数是从27项发表的研究中收集的,然后预测在IBM2 2008年的IBM2 2008年邻居参考图中的荟萃分析。总共确定了与玉米干旱耐受性相关的83个元QTL(MQTL),其中20个确定为核心MQTL。与先前发布的QTL相比,MQTL的平均置信区间大大降低。通过来自基因组关联研究的共定位标记 - 特性关联证实了几乎一半的MQTL。基于与干旱耐受性有关的水稻蛋白的比对,在玉米MQTL附近发现了63个直系同源基因。此外,在20个核心MQTL区域和玉米与同源基因中发现了583个候选基因。基于候选基因的KEGG分析,发现植物激素信号通路显着富集。信号通路可以对干旱耐受性产生直接或间接影响,并与其他途径相互作用。总而言之,这项研究提供了对玉米干旱耐受性的遗传和分子机制的新见解,以对繁殖中这种重要特征的更具针对性的改善。
作物的遗传修饰(GM)始于发现土壤细菌农杆菌可用于将有用的基因从无关物种转移到植物中。BT基因是最常用的基因之一。它产生一种对人类无害但能够杀死害虫的农药毒素。已经生产了许多新的作物类型。其中大多数被修改为害虫,疾病或除草剂耐药性,包括小麦,玉米,油菜,土豆,花生,西红柿,豌豆,甜辣椒,生菜和洋葱。支持者认为,耐旱或耐盐的品种会在恶劣的条件下蓬勃发展。避免昆虫的作物通过最大程度地减少农药的使用来保护环境。与额外维生素A或蛋白质增强土豆的金米可以改善营养。批评家担心转基因食品会产生无法预料的影响。有毒蛋白可能会产生,或者可以将抗生素抗性基因转移到人肠道细菌中。修改农作物可能会变成耐二元的“超级草”。改良的农作物也可能意外用野生植物或其他农作物繁殖。例如,如果已修改的农作物生产用粮食作物繁殖的药物,这可能是严重的。研究表明,确实发生了意外基因转移。一项研究表明,从风中,通过风携带了数十公里的转基因花粉。另一项研究证明,基因已经从美国传播到墨西哥。
缺水应激是影响植物(尤其是葡萄藤的生理和生长反应)最常见的环境压力之一。然而,葡萄藤品种和物种在对水胁迫的耐受性方面有所不同。为了识别最宽容的葡萄茎,使用了两个因子的阶乘随机块设计。第一个因素包括易感简历。Sultana(V。Vinifera L.)接枝移植到三个砧木(Yaghouti,Kolahdari和140 Ru)上,第二个因素是三个水平的水应力潜力(对照,-1 MPA和-2 MPA)。研究了生理参数,例如丙二醛(MDA),电泄漏(EL),脯氨酸,可溶性糖,蛋白质,光合色素和抗氧化剂。我们的结果表明,增加的水应力增强了H 2 O 2,MDA,EL,脯氨酸,可溶性糖和可溶性蛋白,同时减少叶绿素(CHL)和类胡萝卜素含量,生长参数和植物干重。谷胱甘肽过氧化物酶(GPX)的活性响应缺水而增强,而过氧化杀起酶(CAT)和抗坏血酸酯过氧化物酶(APX)酶在-1 MPa时表现出较高的活性,然后在最低水位(-2 MPA)下降低。此外,暴露于水胁迫的140个RU砧木具有较低水平的MDA,H 2 O 2和EL,更高的Chl(A,B),类胡萝卜素,APX和GPX活性以及较高的芽干重。总体而言,这三个砧木的生理和形态反应提出,将商业苏丹娜品种嫁接到耐旱的砧木上,例如140 RU,是提高干旱胁迫耐受性的有效策略。
小麦是一种重要的谷物,全球一半人口都食用小麦。小麦面临环境压力,人们使用了不同的技术(CRISPR、基因沉默、GWAS 等)来提高其产量,但 RNA 编辑 (RES) 在小麦中尚未得到充分探索。RNA 编辑在控制环境压力方面具有特殊作用。对不同类型的小麦基因型中的 RES 进行了全基因组鉴定和功能表征。我们通过 RNA 测序分析采用了六种小麦基因型来实现 RES。研究结果表明,RNA 编辑事件均匀发生在所有染色体上。RNA 编辑位点随机分布,在小麦基因型中检测到 10-12 种类型的 RES。在耐旱基因型中检测到的 RES 数量较多。在六种小麦基因型中还鉴定了 A-to-I RNA 编辑(2952、2977、1916、2576、3422 和 3459)位点。基因本体分析后发现,大多数基因参与了分子过程。还检查了小麦中的 PPR(五肽重复序列)、OZ1(细胞器锌指序列)和 MORF/RIP 基因表达水平。正常生长条件使这三个不同基因家族的基因表达出现差异,这意味着不同基因型的正常生长条件可以改变 RNA 编辑事件并影响基因表达水平。而 PPR 基因的表达没有变化。我们使用变异效应预测器(VEP)来注释 RNA 编辑位点,Local White 在蛋白质的 CDS 区域具有最高的 RES。这些发现将有助于预测其他作物的 RES,并有助于小麦抗旱性的发育。
基因编辑技术的灵活性和可负担性有望在农业领域得到广泛应用。为了利用这一点,支持者强调基因编辑的好处,例如缓解气候影响。另一方面,批评者认为基因编辑将延续工业化农业形式及其伴随的环境和社会问题。在美国和加拿大居民的代表性样本中(n = 1478),我们调查了公众对农业基因编辑的看法和看法。我们推进了现有的基于调查的研究,这些研究往往侧重于知识、熟悉度、信任度或对自然性的感知是否能预测对基因编辑的看法。相反,我们研究社会对工业化食品系统的广泛担忧(批评者提出的关于基因工程的一个关键主张)是否能预测人们对基因编辑的接受程度。我们还根据支持者的论点,探讨了将气候变化视为紧迫问题的观点的预测能力。调查结果探讨了针对具体案例(例如耐旱小麦)和具体替代方案(例如与杀虫剂的使用相比)的基因编辑观点。我们发现,批评工业化食品系统的人最有可能对这项技术表示绝对反对,而那些担心气候变化迫在眉睫的人更有可能支持与气候相关的基因编辑。我们的研究结果表明,需要进一步研究公众团体认为基因编辑引人注目或不引人注目的条件——即应用是否增强或对抗工业食品系统,或提供特定的气候适应性益处。此外,我们认为,在认知调查中关注更广泛的社会优先事项可能有助于满足对基因编辑负责任的研究和创新的呼吁。
1 Taylor, Arnold。2020 年。致编辑的信。西方生产者。11 月 5 日。https://www.producer.com/opinion/letters-to-the- editor-november-5-2020 2 Health, Maximilian。2023 年。独家报道——首席执行官表示,Bioceres 将在巴西获胜后今年在阿根廷销售转基因小麦。路透社。3 月 7 日。https://www.msn.com/en-us/news/us/exclusive- bioceres-to-market-gmo-wheat-in-argentina-this-year-after- brazil-win-ceo-says/ar-AA18kZSM 3 GRAIN 等。2020 年。不要碰我们的面包!,11 月 5 日。https://grain.org/en/article/6548-hands-off-our-bread 4 法新社。 2020年。阿根廷成为第一个批准转基因小麦的国家。 10 月 8 日。https://uk.finance.yahoo。 com/news/argentina-becomes-first-country-approve-225711654。 html?guccounter=1 5 Agrofy 新闻,2021 年,Cómo sigue el proceso de aprobación del trigo容忍e a sequía de Bioceres?,11月11日。https://news.agrofy.com.ar/noticia/196695/como-sigue-proceso-aprobacion-trigo-tolerance-sequia-bioceres 6索姆万什,罗汉。 2020年。巴西Abitrigo警告阿根廷不要采用转基因小麦;有人对此举持怀疑态度。标普全球普氏能源资讯,10 月 14 日。https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/101420-brazils-abitrigo-warns-against-argentinas-gmo-wheat-adoption-some-skeptical-of-move 7 同上。 8 Donley, Arvin。2021 年。巴西批准进口转基因小麦粉。World-Grain.com。11 月 12 日。https://www.world-grain.com/articles/16102-brazil-approves-imports-of-gm-wheat-flour 9 参见全球低水平存在倡议,https://llp-gli.org/ 10 Bioceres。 2020. 新闻稿:Bioceres Crop Solutions Corp. 宣布阿根廷耐旱 HB4® 小麦获得监管机构批准。 10 月 8 日。https://investors.biocerescrops。 com/news/news-details/2020/Bioceres-Crop-Solutions-Corp.- 宣布监管批准抗旱-HB4- Wheat-in-Argentina/default.aspx 11 Plataforma Socioambiental – 阿根廷,2021 年。 Navidad sin transgénicos ¡No queremos Trigo HB4 en nuestro潘杜尔塞! 12 月 10 日。https://www.biodiversidadla.org/Recomendamos/Navidad-sin-transgenicos-!No-queremos-Trigo- HB4-en-nuestro-Pan-Dulce
抽象的背景干旱应力严重阻碍了全球农业生产力,也可能导致对DNA甲基化水平的修改。然而,DNA甲基化的动力学及其与干旱胁迫下基因转录和替代剪接(AS)变化的关联是亚麻籽中未知的,这在干旱和半干旱地区经常培养。结果我们分析为耐旱剂(Z141)中的事件和DNA甲基化模式,而对干旱胁迫(DS)和重复的干旱胁迫(RD)治疗中的对干旱敏感的(NY-17)则分析。我们发现,在干旱压力下,Z141和NY-17中的内含子扣(IR)和替代3'剪接位点(ALT3'SS)事件的数量明显更高。我们发现对DS处理的亚麻籽反应主要受转录调节,而对RD处理的反应是通过转录和AS进行的。整个基因组DNA甲基化分析表明,干旱应激导致整体甲基化水平的总体甲基化水平升高。尽管我们没有观察到差异甲基化基因(DMG)与差异基因(DSG)之间的任何相关性,但我们发现,在Z141中,其基因身体区域过度甲基化的DSG和在NY-17中甲基化过度甲基化的DSG在纽约-17中富集了纽约 - 甲基化症状响应响应基因(GO)的含量。这一发现意味着基因体甲基化在某些特定基因的调节中起重要作用。结论我们的研究是对亚麻籽甲基化变化以及在干旱和重复的干旱胁迫下的关系的首次全面基因组分析。我们的研究揭示了在DS和RD处理下差异表达的基因(DEG)和DSG之间的不同相互作用模式,以及甲基化和随着对干旱和干旱敏感的亚麻籽品种的调节之间的差异。调查结果可能会在将来引起人们的关注。我们的结果为基因表达之间的关联提供了有趣的见解,在干旱胁迫下亚麻籽中的DNA甲基化和DNA甲基化。这些关联的差异可能解释了亚麻籽公差的差异。关键字干旱应力,替代剪接,DNA甲基化,亚麻籽,转录组
