与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
摘要-为了确保供应链的一致性和安全性,石油和天然气行业高度重视输油管道的耐用性和效率。碳钢和不锈钢等传统材料为该行业提供了良好的服务,但高压、高温条件不断变化的需求以及对耐腐蚀性和经济效率的要求正在推动管道材料的创新。本文研究了输油管道制造中使用的多种材料,重点介绍了合金钢、聚合物、复合材料的改进以及纳米技术的应用。它研究了每种材料的优缺点,以及有望改善输油管道性能和环境影响的新兴趋势和可持续替代品。通过案例研究和工业实例,本文深入探讨了新材料的实际应用和未来影响。最后,本文强调需要不断进行材料创新,以满足现代石油和天然气运营的严格标准并促进更可持续的能源部门的发展。索引术语-先进材料、输油管道、耐腐蚀、纳米技术、可持续材料。
或者是否也可以提供具有适当耐腐蚀性能的钢材? “阵列应安装在 YSPSC 建造的钢筋混凝土结构上,与照片 1、图 1 和图 2 中的 E10 部分图表和照片中所示的非常相似” “供应商/投标人应提供所有金属(铝)结构和硬件(即安装导轨、U 型梁、支架、螺母、螺栓、垫圈、基础螺栓、必要时的支撑等,以及此类结构的清晰安装说明和图表。” 金属结构可接受铝和不锈钢。 可接受合适的镀锌钢锚栓/基础螺栓将金属结构安装在 YSPSC 建造的混凝土结构上。 支撑可以由合适的镀锌钢制成,以提供对最大风荷载(台风)的最佳抵抗力。 镀锌厚度必须足以避免腐蚀:“耐候性所有结构必须能够在该地点恶劣的热带海洋环境中抵抗至少 20 年的户外暴露,而不会出现任何明显的腐蚀或结构疲劳。”关于电源逆变器的问题:
摘要 钛合金Ti6Al4V具有强度高、耐腐蚀性能好等优点,被广泛应用于医疗、汽车、航空航天等行业。另一方面,增材制造(AM)技术可以给予产品设计的自由度。为了推广AMed产品,需要将AMed与锻造产品连接起来,了解接头特性非常重要。本研究在氩气保护下用光纤激光器对Ti6Al4V板进行对接焊,并实验研究了激光焊接锻造/锻造、AMed/AMed、AMed/锻造Ti6Al4V板的接头特性。AMed板的抗拉强度高于锻造板,但AMed板的伸长率较小,这是因为AM工艺中AMed板在激光辐照过程中由于快速冷却而产生α'马氏体。然后,AMed/AMed板的激光焊接接头具有较高的抗拉强度,但伸长率小于锻造/锻造板。强化/锻造钢板的焊接接头表现出良好的焊接状态,因为较小的热输入导致锻造钢板和强化钢板之间形成较小且硬度较高的焊道。
成分复杂的材料在极端环境下表现出了非凡的结构稳定性。其中,最常想到的是高熵合金,其化学复杂性赋予了硬度、延展性和热弹性的不寻常组合。与这些金属-金属键合系统相比,离子键和共价键的加入导致了高熵陶瓷的发现。这些材料还具有出色的结构、热和化学稳定性,但功能特性种类繁多,能够实现连续可控的磁、电子和光学现象。从这个角度来看,我们概述了高熵陶瓷在极端环境下功能应用的潜力,其中内在稳定性可能为固有硬化设备设计提供一条新途径。在辐射、高温和耐腐蚀领域,回顾了当前关于高熵碳化物、含锕系元素陶瓷和高熵氧化物的研究,其中局部无序的作用被证明可以创造自修复和结构坚固的途径。在此背景下,概述了创造未来在恶劣环境下运行的电子、磁性和光学设备的新策略。
1 . 长春理工大学跨尺度微纳制造教育部重点实验室,长春 130022 2 . 长春理工大学中国国际纳米处理与制造研究中心,长春 130022 摘要 金属是日常生活中不可或缺的工程材料,超疏液性金属表面(超疏水、超疏油、水下超疏油和滑溜特性)的研究近年来备受关注。大自然是一位魔术师,赋予每一种有机生命体独特的优势。研究人员通过各种方式创造出了大量仿生超疏液金属表面,这些仿生超疏液金属表面在自清洁、耐腐蚀、防结冰、减阻等应用方面表现出优势。本文报道了仿生超疏液金属表面的具体制备方法及应用。最后对仿生超疏液金属表面尚存的挑战及未来发展前景进行了初步分析,希望对拓宽金属的潜在应用范围及未来金属基先进功能材料的研究提供有力的参考。
盐水储存设施必须满足以下所有条件:· 盐溶液具有极强的腐蚀性。确保与盐水接触的设备由耐腐蚀材料制成,例如高密度聚乙烯、不锈钢或玻璃纤维。· 盐水或氯化镁等液体除冰材料应存放在维护良好且贴有标签的储罐中。· 存放 1000 加仑或更多盐水的室外储存区必须具有二级密封结构。二级密封结构应由与盐兼容的材料制成,并带有屋顶。· 二级密封结构必须建造成容纳以下较大容量:Þ 密封结构内所有容器总容量的 10%,或 Þ 密封结构内最大储存容器容量的 110%。· 二级密封结构必须允许检查储罐或容器,及时发现任何泄漏并回收任何溢出物,以及清除和妥善处理任何捕获的沉淀物,以便始终保持最低所需容量。 · 室内储存的盐水必须加以管理,以免排放物进入排水沟、地下水或地表水。如果有地漏,则必须将其堵住,除非它连接到储水箱,或获得弗吉尼亚州环境质量部颁发的排放许可证。您的设施 SWPPP 应包含持有的任何许可证的文件。
摘要:VDM合金780是一种新型的基于Ni的超合金,与Inconel 718相比,机械性能较大的机械性能较大,其工作温度较高约50℃。年龄可硬化的尼古拉合金结合了提高的温度强度与氧化耐药性,以及由于γ' - 沉淀而提高的微观结构稳定性。这些优点使其适用于可用于高温应用中的耐磨性和耐腐蚀涂料。但是,VDM合金780尚未足够研究激光金属沉积应用。进行了316升标本上单个轨道的实验设计,以评估过程参数对clad质量的影响。随后,通过破坏性和非破坏性测试方法评估了外壳的质量,以验证VDM Alloy 780对于激光金属沉积应用的适用性。单轨实验为涂料或添加剂制造应用提供了基础。用于传达结果,提出了带有回归线的散点图,这说明了特定能量密度对所得孔隙率,稀释,粉末效率,纵横比,宽度,宽度和高度的影响。最后,在孔隙率方面,包裹的质量通过每个单位长度质量不同的两个过程图可视化。
太阳能驱动水分解的持久性能和高效率是光电化学 (PEC) 电池尚未同时实现的巨大挑战。虽然由 III-V 族半导体制成的光伏电池可以实现很高的光电转换效率,但它们与电催化剂的功能集成以及工作寿命仍然是巨大的挑战。在此,超薄 TiN 层被用作埋层结 n + p-GaInP 2 光电阴极上的扩散屏障,使得随后的 Ni 5 P 4 催化剂生长为纳米岛时能够升高温度,而不会损坏 GaInP 2 结。所得 PEC 半电池的吸收损失可以忽略不计,饱和光电流密度和 H 2 释放量与用 PtRu 催化剂装饰的基准光电阴极相当。高耐腐蚀 Ni 5 P 4 /TiN 层在 120 小时内显示出不减损的光电阴极运行时间,超过了之前的基准。通过蚀刻去除电沉积铜(引入的污染物),恢复了全部性能,证明了操作耐用性。 TiN 层扩大了合成条件并防止腐蚀,使 III-V PEC 设备稳定运行,而 Ni 5 P 4 催化剂则取代了昂贵且稀缺的贵金属催化剂。
功能梯度材料 (FGM) 的概念是为了开发高性能耐热材料而提出的,其中耐热陶瓷与金属混合[1]。FGM 是一类先进的异质材料,其成分和性能表现出可控的空间变化,从而导致其性能 (热/电导率、耐腐蚀、机械、生物化学等) 逐渐变化。FGM 背后的主要思想包括一种不能满足所有设计要求的材料和一种适用于特定位置和操作条件的不同材料。由于这种协同效应,FGM 可应用于不同领域,例如生物医学、汽车和航空航天、电子、光学、核应用、反应堆部件和能量转换 [2]。FGM 的特点是材料之间可以逐渐转变,也可以不连续/突然转变。对于突然转变(直接界面),部件会承受巨大的应力和化学不相容性。相反,连续/渐进的转变可以最大限度地减少这些问题,并改善界面处的机械性能 [3、4]。基于电弧的定向能量沉积(DED-arc),通常称为线材和电弧增材制造(WAAM),是制造 FGM 的一种很有价值的制造技术。使用配备多个独立线材送料器的机器可以轻松进行其生产,从而可以创建在多个方向上具有成分和性能梯度的部件。同时使用两根线材被称为双线和电弧增材制造 (T-WAAM)。尽管如此,在同一熔池中结合两种材料会带来令人困惑的挑战,包括可能形成不良的金属间化合物,这会降低可焊性/可打印性(例如,由于形成热裂纹和高硬度区域)并导致过早失效 [2]。此外,热膨胀系数不匹配、熔化温度差异以及溶解度不足都会导致开裂和脆化 [5]。每根焊丝不同的热物理性质也意味着确保零件无缺陷所需工艺参数存在显著差异。316L 不锈钢与 Inconel 625 的 FGM 用于化工厂、石油天然气和核工业应用。特别是在堆焊管道和阀门中,零件插入两种不同的环境中,需要不同的耐腐蚀和耐磨性(内部接触腐蚀性流体,例如含有高 CO2 和 H2S 的原油,外部接触大气 [6e8])。尽管 Inconel 625 的这些性能更胜一筹,但在结构件的关键区域用不锈钢替代 Inconel 可以降低相关部件成本。两种合金的基质均为单个面心立方 (FCC) 相 (g),主要合金元素为 Fe、Cr 和 Ni。根据工艺和制造策略,可能会出现一些问题,其中热裂纹尤为普遍。Shah 等人 [9] 使用激光定向能量沉积 (L-DED) 分析了工艺参数对 316 不锈钢到 Inconel 718 FGM 制造的影响。作者没有证明由激光诱导裂纹的证据