基于石墨烯的范德华异质结构利用了通过接近效应在石墨烯层中调整自旋轨道耦合(SOC)。在长波长处 - 由狄拉克点附近的电子状态骑马 - 可以通过涉及新型SOC术语的汉密尔顿人有效地建模,并允许通过所谓的rashba角度θr的切向和径向自旋纹理的混合。采用这种有效的模型,我们执行逼真的大规模磁转运计算 - 横向磁心焦点和Dyakonov-perel自旋松弛 - 并表明存在着独特的定性和定量特征,允许其无偏见的实验性分解,从而从其新颖的Radial对方中对常规的Rashba Soc进行了无偏见的SOC,此处称为Radial Rashba Soc。与此一起,我们提出了一个方案,以直接估算RASHBA角,通过探索磁响应对称性在交换平面磁场时。为了完成故事,我们在出现的Dresselhaus SoC的存在下分析了磁磁运输和自旋 - 弹性签名,还为径向超导二极管效应的可能场景提供了一些通用的后果。
信息驱动的波前整形 科学项目描述:光力学研究光与机械运动之间的相互作用。该领域最近取得了重大进展,包括突破光力学相互作用的量子领域,并展示了量子宏观运动状态的制备和检测。这些里程碑的前提是 2010 年初纳米光力学系统的突破,该系统已证明能够利用纳米级的大型光物质相互作用实现超高灵敏度的光力学目的。到目前为止,这些系统的灵敏度极限的处理方法与为宏观对应物开发的方法类似,假设高斯条件和幺正性。然而,这些假设必须用纳米光力学系统进行修改,因为目前纳米光力学系统的操作可能远偏离其灵敏度潜力。事实上,对克拉美-罗界限的理论考虑(该界限定义了参数估计的精度极限)表明,这些系统远未达到最佳性能。这次实习是项目的一部分,该项目旨在利用量子信息理论驱动的波前整形来解决纳米光机械耦合的基本极限。简而言之,我们的实验概念依赖于将一个纳米光机械系统与多模成像设备连接起来,该系统由一个锥形纳米光机械毛细管组成,由强聚焦激光探针照射(见图 1(b)),然后输入信息理论训练的算法(见图 1(a)),从而识别性质并达到基本的运动检测极限。与传统的运动检测方法相比,使用此方法的早期结果已使灵敏度提高了 25 dB 以上(见图 1(c))。
高谐波产生(HHG)已引起了对材料特性和超快动态的探索的极大关注。然而,缺乏对HHG和其他准颗粒(例如声子)之间耦合的考虑,一直阻碍对HHG中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干偶联的HHG来揭示了Quasiparticle耦合的强场动力学中多体电子载体机制。相干的声子被揭示出通过声子变形效应引起的绝热带调制以及多个山谷中光载体的Na和非平衡分布有效地影响HHG。绝热和NA机制通过影响声子周期和HHG强度振荡的相位延迟而离开指纹,这两者在实验上都是可测量的。对这些数量的研究可以直接探测材料中电子相互作用。
1麦克斯·普朗克气象学研究所,德国汉堡2现在,现在:德国德国汉堡的德意志克里姆里雷兴特里姆,德国3赫尔姆霍尔茨中心波茨坦,德国地球科学家研究中心 - GFZ,GFZ,德国波斯达姆,德国,德国4个现在:联邦地理学家和自然资源的工业学院,杂志公司,杂货店5.德国Tübingen6现在,现在:天文学融合,海德堡大学天文学中心,德国海德尔伯格,德国海德堡7现在,现在:美国大气科学与气候研究所国家研究委员会,意大利8号,现为:地球动力学和环境研究
德国气候服务中心(Gerics),Helmholtz-Zentrum以下,汉堡,德国,b Depramento b Defamento d de f´sica y Matem aticas,Aticas,ATICAS´ATICAS´ATICAS´ADALCAL“ A,ALCAL” A,ALCAL·De Henares大学,De Henares,de Henares,Madrid,Madrid,Madrid,Spain C National Centeriencence of Altighteric Science of Texas at Austin, Austin, Texas e Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany f Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia g European Commission, Joint Research Centre, Ispra, Italy h African Institute for Mathematical Sciences, Kigali, Rwanda i Department of Physics, University of Ghana, Accra, Ghana j Department of Earth伊利诺伊州伊利诺伊大学芝加哥大学伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州环境科学部的环境科学,伊利诺伊州莱蒙特市阿尔尼国家实验室
摘要:神经科学的基本问题是理解解剖结构如何支持大脑功能的工作机制,以及显著的功能波动如何引发普遍存在的行为。我们在系统辨识领域提出了这个逆问题,其中我们使用几何散射变换(GST)来模拟结构-功能耦合,并使用神经库普曼算子来揭示底层复杂系统的动态机制。首先,使用GST通过将大脑活动的代理信号投射到受大脑中连接模式几何约束的神经流形中来构建测量集合。然后,我们寻求找到一个库普曼算子,以相对简单的线性映射阐明部分观察和行为结果之间的复杂关系,这使我们能够理解控制系统中的功能动力学。此外,我们将 GST 和 Koopman 算子集成到端到端深度神经网络中,从而生成具有数学保证的可解释大脑动力学模型。通过对人类连接组项目-衰老 (HCP- A) 数据集进行的严格实验,我们的方法在认知任务分类中表现出最先进的性能,超越了现有基准。更重要的是,我们的方法在使用机器学习方法揭示大脑动力学的新见解方面显示出巨大的潜力。
最近的实验表明,在振动强耦合(VSC)方面的极性子可以改变化学反应性。在这里,当将单个分子耦合到光腔时,我们介绍了VSC模化速率常数的完整理论,在该光腔中,人们了解了光子模式寿命的作用。分析表达表现出鲜明的共振行为,当腔频率与振动频率匹配时,达到最大速率常数。该理论解释了WHYVSC速率常数修饰与腔外振动的光谱非常相似。此外,我们讨论了VSC模化速率常数的温度依赖性。该分析理论与所有探索机制的运动层次(HEOM)模拟的数值确切层次方程(HEOM)非常吻合。最后,当考虑Fabry-Pérot腔内的平面动量时,我们讨论了正常发病率的共振条件。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。
1 2 3 4 6 7 8 9 10 11. 16 18 315 312 415 52 512 512 512 512 510 512 512 515
我们研究了在两个和三个耦合的平行Schrieffer-Heeger(SSH)波导阵列的边缘的多极拓扑孤子的形成。我们表明,耦合波导阵列中的波导间距(二聚体)中波导间距的独立变化导致其在几个具有不同内部对称性的多个拓扑边缘状态的边缘出现。新兴边缘状态的数量取决于拓扑非平凡的阶段的数组数量。在存在非线性的情况下,这种边缘状态引起了具有独特稳定性特性的多极拓扑边缘的家族。我们的结果表明,准二维拓扑结构之间的耦合基本上丰富了它们中存在的各种稳定拓扑边缘孤子。