摘要:双环戊二烯(DCPD)的线性低聚物是热塑性和热固性材料的反应性前体。与臭味的父母单体不同,由DCPD组成的低聚物是无味的。通过对末端组或骨干化学的适当修改,远程技术DCPD寡聚物具有潜在的效用,作为交联的跨链接器和宏观工程学前体,用于块和移植共聚物。但是,大多数现有的产生寡核DCPD的方法需要溶剂,相对较慢,需要无空气的技术。在这里我们表明,纯dCPD和其他垂体衍生物的额叶开环差异寡聚(Fromo)在几分钟内迅速生成数百克材料,催化剂载荷为0.5 mm。这种节能催化过程利用反应产生的热量在整个液体单体中自我传播的寡聚化。使用末端烯烃(例如苯乙烯),其中交叉 - 弥弥教反应(即链转移)与开环的分解(即传播)竞争。 Kendrick质量分析能够快速鉴定和分配所有链端类型,并量化了不频繁的环戊烯开环反应所产生的分支程度。 这种分析技术还检测出源自单体或链转移剂中痕量杂质的低聚物物种,这些杂质在其他表征方法中很难观察。 获得的低聚物具有明确的链端和分子量分布。使用末端烯烃(例如苯乙烯),其中交叉 - 弥弥教反应(即链转移)与开环的分解(即传播)竞争。Kendrick质量分析能够快速鉴定和分配所有链端类型,并量化了不频繁的环戊烯开环反应所产生的分支程度。这种分析技术还检测出源自单体或链转移剂中痕量杂质的低聚物物种,这些杂质在其他表征方法中很难观察。获得的低聚物具有明确的链端和分子量分布。
摘要 - 图像搜索是一个热门话题,它在各种物联网(IoT)应用程序(例如疾病诊断,面部识别和指纹识别)中发挥了重要作用。同时,图像的扩散使图像所有者将图像外包到云中,以减轻本地存储和计算负担。因此,图像搜索没有任何对云的隐私范围的搜索,已引起了很大的关注,并在文献中广泛探讨了。过去几年已经提出了许多基于Bloom滤波器的方案,但是大多数方案都遭受了高存储开销,较低的假正率,甚至揭露了Bloom滤波器中的值。为了解决这些挑战,在本文中,我们首先设计了一个合并和重复的不可区分的布鲁姆过滤器(MRIBF)索引结构,该结构可以减少开销的存储空间并以较低的假阳性速率实现自适应安全性。然后,使用MRIBF,我们提出了一个安全有效的基于BLOOM过滤器搜索方案(BFIS),以实现比线性更快且更准确的搜索。详细的理论分析表明,我们的方案确实是准确且安全的。广泛的实验表明,我们的计划确实是有效且可行的。
摘要技术的快速进步引起了一个革命性的概念,称为“事物的人工智能”(Aiot)。此抽象探讨了两种开创性技术,人工智能(AI)和物联网(IoT)的融合及其对各个行业和日常生活的变革性影响。此外,AIOT对智能城市有重大影响,使城市规划人员能够优化交通管理,废物处理,能源消耗和公共安全。智能房屋还利用Aiot来创建无缝的家庭自动化系统,提高能源效率并提供个性化的用户体验。总而言之,Aiot代表了一种开创性的范式,它正在重塑行业并改变我们与技术互动的方式。AI和IoT的协同作用提供了无与伦比的机会,可以创建一个更具联系,聪明和高效的世界。在面对挑战的同时,AIOT应用的好处有望彻底改变多个部门,并改善全球个人的生活质量。继续进行研究,协作和负责任的发展对于释放这种创新和变革性技术的全部潜力至关重要。关键字:人工智能,信息技术,数据隐私。
随着强大技术的出现,微电子已成为我们日常生活中不可或缺的一部分。它们还用于医疗保健、环境监测、机器人或娱乐等广泛领域。这门微电子入门课程是为物联网 (IoT) 量身定制的,它教授如何使用微电子电路通过传感器与环境交互并与其他设备进行无线通信。它涵盖了传感器接口的评估和实现、数据转换、信号处理和设备通信等主题。这门定制课程自下而上,从介绍物联网微电子的基本构建块开始。然后,接着是系统和架构接口考虑。最后,学生有机会基于可用的微电子模块实现一个基本的物联网系统。本课程旨在为物联网应用提供关键微电子构建块的基本概念。学生将通过实际设计示例和案例研究获得使用可用微电子模块的实践经验。
摘要 由于其更好的强度重量比、可模塑性、抗断裂性以及能够使用当地材料,钢丝网水泥正成为一种越来越受欢迎的建筑材料。土聚物技术提供了一种环保的替代品,该技术使用碱性溶液来激活富含二氧化硅和氧化铝的材料。本研究重点研究土聚物基钢丝网水泥板,探索其弯曲性能并用土聚物砂浆替代水泥以提高性能。本研究调查了不同百分比的粉煤灰(范围从 0% 到 20%)、GGBS(范围从 80% 到 100%)和 2% 的纳米二氧化硅对钢丝网水泥土聚物混凝土性能的影响。使用碳纤维增强聚合物 (CFRP) 缠绕金属丝网测试弯曲行为。粉煤灰是煤电厂的副产品,与 GGBS 结合以提高强度和凝固性。采用 1:2 砂浆比,包含硅酸钠、氢氧化钠、GGBS 和粉煤灰。添加 80% GGBS 可获得最佳效果,尽管粉煤灰中 100% GGBS 的强度更高。纳米二氧化硅进一步提高了性能,1.5% 纳米二氧化硅和 80% GGBS 的强度显著提高 240%。研究最后确定了适合实际应用的优越组合,考虑到样品的渗透性、耐酸性和耐热性。