高潮®1002D NAT 1是球形聚酰胺6粉末,粒径分布窄,平均直径为20µm。高潮®1002d NAT 1具有高熔化温度,高于210°C:即使在高温下处理时,颗粒的形状和粒径分布也可以保留。通过严格控制粒度分布和孔隙率,可以实现极高的质量,从而确保表现出色。高潮®是一系列高性能超细聚酰胺粉末,用作涂料,墨水,清漆和技术化合物中的多功能添加剂。由于其良好的分散能力,对流变学的影响降低及其低密度,因此在制剂中引入了高潮®聚酰胺粉。高潮®聚酰胺粉是表面修饰符,专门设计用于光泽控制,纹理创造和触觉特性调节。他们还提高了阻塞性并减少摩擦系数。磨损,刮擦,冲击电阻和涂料,油墨和清漆和技术化合物的柔韧性可以通过高潮®聚酰胺粉末显着改善。
ORGASOL ® 1002 D NAT 1 是球形聚酰胺 6 粉末,粒度分布窄,平均直径为 20µm。Orgasol ® 1002 D NAT 1 的熔点高于 210°C:即使在高温下加工,颗粒的形状和粒度分布也能保持不变。通过严格控制粒度分布和孔隙率,可实现极高的质量水平,确保出色的性能一致性。ORGASOL ® 是一系列高性能超细聚酰胺粉末,用作涂料、油墨、清漆和技术化合物中的多功能添加剂。由于 ORGASOL ® 聚酰胺粉末具有良好的分散能力、对流变性的影响较小且密度低,因此很容易在配方中加入它们。ORGASOL ® 聚酰胺粉末是表面改性剂,专为光泽控制、纹理创建和触觉特性调整而设计。它们还可以提高抗粘连性并降低摩擦系数。使用 ORGASOL ® 聚酰胺粉末可以显著提高涂料、油墨、清漆和技术化合物的耐磨性、耐刮擦性、耐冲击性和柔韧性。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
科隆布,2024 年 10 月 10 日 阿科玛在全球生产生物基聚酰胺 11 链时的碳足迹达到 1.3 千克二氧化碳当量/千克,比传统化石基聚酰胺低 80% 一年前,阿科玛宣布其生物基 Rilsan ® 聚酰胺 11 的碳足迹显着减少,达到低于 2 千克二氧化碳当量/千克(1)。该集团现在宣布,通过使用更多可再生电力并在其生产基地进行多项额外的能源效率改进,将碳足迹进一步减少至 1.3 千克二氧化碳当量/千克(1)。新值适用于从 2025 年 1 月开始的 Rilsan ® 聚酰胺 11 的全球生产。Rilsan ® 聚酰胺 11 完全来自可再生蓖麻籽,是 100% 分离的生物基产品。阿科玛在三大主要地理区域——欧洲、北美和亚洲——生产这些先进聚合物。Rilsan® 聚酰胺 11 广泛应用于新能源汽车、3D 打印、消费电子产品或高性能跑鞋等要求极为严格的市场。阿科玛高性能聚合物高级副总裁 Laurent Tellier 表示:“这是我们发展历程中的又一重要里程碑,也是我们进一步降低环境影响的承诺。与使用化石原料和传统能源生产的聚酰胺树脂相比,新的碳足迹值减少了约 80%。正如我们去年所解释的那样,我们的较低碳足迹值适用于我们整个全球生产,而不仅仅是一组特定的等级或某个地点。我们致力于采取整体可持续发展方法——从蓖麻籽的种植到氨基 11 单体的生产,最终到我们聚合物的聚合、分销甚至回收。”我们目前正朝着进一步降低 PCF 的目标迈进,到 2030 年将 PCF 降低至 1 千克二氧化碳当量/千克。”
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
我们的扩展循环和基于生物的产品产品使我们的客户能够做出负责任的选择。在2023年,我们能够通过赢得ISCC+认证为客户提供更大的基于循环和生物的解决方案的选择。这项成就重申了我们对以客户为中心的承诺,这是我们日常行动的指导原则。每天,我们通过聚酰胺来设计并产生新的可能性来改善世界。聚酰胺使我们的汽车更轻,房屋中的电子设备更安全,而花园工具更可持续。e-Mobility是我们预测未来客户需求方法的主要力量,导致了大量基于多酰胺的应用程序。可持续的聚酰胺以较少的温室气体排放产生,将定义我们将来使用自行车,汽车和公共汽车的方式。
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。