被定义为“在妊娠的第二或第三三个月诊断出的糖尿病,在妊娠前没有明显明显明显的糖尿病” [1]。在墨西哥,GDM的流行率一直在增加。目前,其发病率为17.7%[2]。GDM增加了后代的敏感性,发展出胰岛素抵抗,肥胖和高血压[3,4]。儿童菌群的早期改变与过敏,炎症和儿童肥胖有关[5-7]。根据健康与疾病的发展起源(DOHAD)理论,宫内暴露于过度能量可能会导致永久性的生理学和代谢改变,从而增加了成年后疾病的风险增加肥胖和2型糖尿病[8-13]。新生儿的肠道菌群特别有趣,因为由于时间的迅速变化,肠中的细菌群落非常不稳定。因此,幼儿期是一个关键的时间窗口,可以修改孩子的肠道菌群[14,15],而成年人的“成熟”微生物群(随着时间的流逝,这似乎相对稳定)。这项研究的目的是确定与年龄和GDM相关的分类变化,并对患有GDM的母亲的后代和后代的肠道 - 微生物群和没有GDM(N-GDM)的母亲的后代进行分类。
微孢子虫肠肠肝癌(EHP)是一种与真菌相关的,形成孢子的寄生虫。EHP感染会导致虾的生长迟缓和大小变化,从而导致严重的经济损失。 对虾免疫反应的研究表明,在EHP感染后,几种抗微生物肽(AMP)上调。 在那些高度高度的放大器中是C型溶菌酶(LV LYZ-C)。 然而,负责虾中LV LYZ-C产生的免疫信号通路及其针对EHP感染的功能仍然很少了解。 在这里,我们表征了主要的虾免疫信号通路路径,并发现在EHP感染后TOLL和JAK/STAT途径被上调。 击倒JAK/STAT途径中的无效(圆顶)受体,导致LV LYZ-C显着降低,EHP拷贝数的升高。 我们通过在大肠杆菌中异源表达重组LV LYZ-C(R LV Lyz-c)进一步阐明了LV LYZ-C的功能。 r lv lyz-c表现出针对多种细菌的抗菌活性,例如枯草芽孢杆菌和弧菌副溶血性。 有趣的是,我们发现R LV LYZ-C对白色念珠菌的抗真菌活性,这使我们进一步研究了R LV Lyz-C对EHP孢子的影响。 与R lv lyz-c的EHP孢子一起孵育,然后再构成几丁质染色,表明信号以剂量依赖性的方式显着降低,这表明R LV LYZ-C可能会在EHP孢子上消化一件几丁蛋白。 我们假设EHP内孢子的变薄会导致渗透率改变,从而影响孢子发芽。EHP感染会导致虾的生长迟缓和大小变化,从而导致严重的经济损失。对虾免疫反应的研究表明,在EHP感染后,几种抗微生物肽(AMP)上调。在那些高度高度的放大器中是C型溶菌酶(LV LYZ-C)。然而,负责虾中LV LYZ-C产生的免疫信号通路及其针对EHP感染的功能仍然很少了解。在这里,我们表征了主要的虾免疫信号通路路径,并发现在EHP感染后TOLL和JAK/STAT途径被上调。击倒JAK/STAT途径中的无效(圆顶)受体,导致LV LYZ-C显着降低,EHP拷贝数的升高。我们通过在大肠杆菌中异源表达重组LV LYZ-C(R LV Lyz-c)进一步阐明了LV LYZ-C的功能。r lv lyz-c表现出针对多种细菌的抗菌活性,例如枯草芽孢杆菌和弧菌副溶血性。有趣的是,我们发现R LV LYZ-C对白色念珠菌的抗真菌活性,这使我们进一步研究了R LV Lyz-C对EHP孢子的影响。与R lv lyz-c的EHP孢子一起孵育,然后再构成几丁质染色,表明信号以剂量依赖性的方式显着降低,这表明R LV LYZ-C可能会在EHP孢子上消化一件几丁蛋白。我们假设EHP内孢子的变薄会导致渗透率改变,从而影响孢子发芽。透射电子显微镜分析表明,主要由几丁质组成的内孢子层被R LV LYZ-C消化。最后,我们观察到用R LV LYZ-C处理的EHP孢子显示孢子发芽率显着降低。这项工作提供了对负责LV LYZ-C产生及其抗EHP特性的虾免疫信号通路的见解。这些知识将作为制定EHP控制策略的重要基础。
• 交感神经系统 (SNS) 与“战斗、逃跑或冻结”反应有关,也称为“压力”反应。它通常被比作汽车的油门:当大脑检测到压力事件时,SNS 通过从肾上腺释放肾上腺素向身体发送信号。这会导致心率和血压增加、呼吸加快以增加氧气摄入量(以提高警觉性)并释放葡萄糖以提供额外的能量。在交感神经反应期间,能量被导向心脏、肺、肌肉和大脑,而血流则远离消化道,导致消化延迟和胃肠道氧气减少。这可能导致腹部症状,如消化不良或恶心。压力反应还会导致大肠刺激,这可能会导致排便需求增加(也称为紧迫感)。
由于 IBS 的异质性及病因不明,因此一直难以确定明确的生物标志物和治疗靶点。“IBS”一词是指医学上无法解释的肠道和大脑之间双向通讯紊乱的统称。这些紊乱由多种因素引起,包括内脏过敏、低度炎症反应、肠动力紊乱、中枢神经系统 (CNS) 处理改变以及肠道菌群组成改变[1]。在肠道中,功能良好的菌群高度适应宿主,并进行对宿主功能很重要的生化和代谢过程。来自肠道菌群的信号通过肠道和大脑之间的神经、内分泌和免疫通讯途径来调节体内平衡的各个方面[4,5]。总之,这建立了菌群-肠-脑 (MGB) 轴的概念(图 1)。
目的:由于克罗恩病(CD)引起的肠纤维狭窄非常普遍。尽管已经确定了几种纤维狭窄的临床危险因素,例如验水,小肠疾病的位置和深层粘膜溃疡,预测纤维狭窄仍然具有挑战性。肠道菌群在CD的发展和进展中起着至关重要的作用。然而,其在肠纤维狭窄中的作用知之甚少。利用单中心横断面研究,我们旨在研究粪便菌群在与CD相关的纤维狭窄中的作用。方法:使用元基因组分析,我们检查了肠纤维狭窄患者与没有狭窄的患者之间的粪便菌群差异。我们鉴定了特定的微生物群,并评估了其对肠纤维狭窄的预测准确性。此外,我们探索了两组之间肠道菌群的功能差异。结果::我们对粪便样品的研究表明,纤维狭窄患者与CD中没有狭窄的患者之间的肠道菌群结构没有显着差异。但是,从分类学上讲,我们发现了70个分类单元,两组之间的丰度明显不同(p <0.05)。此外,Lefse分析表明,g_bacteroides和g_enterocloster可以预测肠纤维狭窄,而p_actinobacteria,c_actinomycetia,c_bacilli,c_bacilli,o_lactobacilli,o_lactobacilles,f_strepteptoccoccaccaceae and g_strepteptoccus可以预测CDNESISD。结论:粪便菌群在CD中显着影响肠纤维狭窄。功能分析表明,在纤维狭窄的CD患者中,在KEGG途径水平的五个代谢途径中的差异富集,包括鞘脂代谢,脂肪酸代谢以及新霉素,kanamycin和gentamicin的新霉素的生物合成。在蛋酒数据库中,我们观察到两组之间四个功能类别的差异,包括细胞过程,信号传导和代谢。尽管α和β多样性没有显着差异,但纤维狭窄与微生物群组成和功能的变化有关,这表明粪便微生物群在预测与CD相关的纤维狭窄方面的潜力。关键字:克罗恩病,纤维狭窄,粪便菌群,元基因组分析
国家参考中心和顾问实验室在RKI芽孢杆菌•产生神经毒素的梭菌·封闭梭菌·隐球病和罕见的全身性真菌性·电子显微镜诊断感染性疾病中的电子显微镜诊断。 ·脊髓灰质炎和肺炎病毒·呼吸促性促性病毒,parainfluenza,metapneumoviruses·rotaviruess·沙门氏菌病和其他肠道病原体·葡萄球菌和肠球菌·肠球菌
在确定为水污染物的细菌中,已分离出革兰氏阴性菌,特别是属于假单胞菌属、黄杆菌属、加利昂氏菌属、气单胞菌属、弧菌属、无色杆菌属、产碱杆菌属、博德特氏菌属、奈瑟菌属、莫拉菌属和不动杆菌属的细菌。然而,符合水质潜在生物指标特征的细菌群是大肠菌群、肠杆菌科或肠杆菌科,兼性厌氧、不产生孢子、产气和糖酵解乳糖发酵菌,最终产物为酸。它们占人类和动物肠道微生物的 10%,因此它们在水中的存在与粪便污染有关,表明处理不充分或随后受到污染。(Ríos-Tobón 等人,2017 年)
背景和目的:肠菌菌Mimcobiota是人类肠道菌群的主要组成部分,但其在直肠癌(CRC)中的作用仍然难以捉摸。我们进行了一项荟萃分析,以发现真菌迈气对CRC的贡献。方法:我们从以前的7个出版物中检索了粪便元基因组数据集,并建立了一个额外的内部队列,总计1329个宏基因组(454个带有CRC,350,患有腺瘤和525个健康个体)。菌落组成和微生物相互作用。候选富含CRC的真菌物种(Aspergillus rambellii)在体外和体内都有功能验证。结果:多线分析表明,CRC中的肠菌菌属发生了变化。我们鉴定了与来自多个队列的CRC或腺瘤患者相关的真菌。签名CRC-
Linkou内科部,胃肠病学系(依赖)炎症性肠病疾病粪便菌群移植治疗性内窥镜内窥镜内窥镜内窥镜内窥镜超声肠内镜检查
ETEST ® 是一种手动定量技术,用于测定非苛养革兰氏阴性和革兰氏阳性需氧菌以及苛养菌的抗菌敏感性。该系统包含预定义的抗生素梯度,用于确定不同抗菌剂在琼脂培养基上过夜培养后对微生物的最低抑菌浓度 (MIC,以 μg/mL 为单位)。使用指征 ETEST ® IP 可用于测定亚胺培南对下列微生物的 MIC: • 需氧菌: ◦ 革兰氏阴性需氧菌:肠杆菌、假单胞菌、不动杆菌 ◦ 革兰氏阳性需氧菌:肠球菌 • 肺炎链球菌 • 厌氧菌: ◦ 革兰氏阴性厌氧菌:拟杆菌、梭杆菌 ◦ 革兰氏阳性厌氧菌:梭状芽孢杆菌、无芽孢革兰氏阳性杆菌、革兰氏阳性球菌