癌症干细胞(CSC)被广泛认为是肿瘤起始和进展的主要介体。近年来,微生物感染与癌症干性之间的关联引起了很大的学术兴趣。卟啉单胞菌(牙龈疟原虫)越来越被认为与口服鳞状细胞癌(OSCC)的发展密切相关。然而,牙龈疟原虫在OSCC细胞的干性中的作用仍然不确定。在此,我们表明牙龈疟原虫与人类OSCC标本中的CSC标记表达呈正相关,促进了OSCC细胞的干性和肿瘤性,并增强了裸鼠的肿瘤形成。从机械上讲,牙龈疟原虫通过上调stearoyl-COA去饱和酶1(SCD1)表达的表达来增加OSCC细胞中的脂质合成,这是一种参与脂质代谢的关键酶,最终导致了茎的获得增强。此外,在体外和体内,OSCC细胞中的SCD1抑制减弱了OSCC细胞的牙龈疟原虫诱导的OSCC细胞的干性,包括CSC标记的表达,球体形成能力,化学耐药性和肿瘤生长。此外,牙龈疟原虫感染的OSCC细胞中SCD1的上调与KLF5的表达相关,并且通过牙龈疟原虫活化的NOD1信号传导调节。在一起,这些发现强调了依赖SCD1依赖性脂质合成在OSCC细胞中的牙龈疟原虫诱导的干性摄取中的重要性,这表明NOD1/KLF5轴可能在调节SCD1表达中起关键作用,并为靶向SCD1作为新的OSCC的靶向SCD1的分子基础。
摘要 铜绿假单胞菌是医疗环境中的重要病原体,占获得性感染的 10% 至 20%。这种氧化酶阳性的革兰氏阴性细菌因能够引起呼吸问题、伤口感染和与呼吸机使用相关的肺炎而闻名,尤其是在囊性纤维化患者中。在抗生素耐药性日益严重的情况下,尤其是利比亚医疗环境中耐药模式数据有限的情况下,及时准确地诊断铜绿假单胞菌至关重要。本研究检查了米苏拉塔医疗中心伤口中铜绿假单胞菌感染的发生率,并测试了针对 ecfX 基因的 RT-PCR 在检测病原体方面的有效性。本研究从患有伤口感染的患者身上获取了 165 个临床样本,使用传统方法和分子方法,我们能够识别铜绿假单胞菌。研究表明,与传统生化方法相比,针对 ecfX 基因的 RT-PCR 为快速准确地检测临床样本中的铜绿假单胞菌提供了一种可靠的技术。引用此文章。Teka I、Elfaitori A、Hajer Almuaget。使用 ecfX 基因作为从感染伤口中分离的铜绿假单胞菌的特定识别靶点。Alq J Med App Sci。2024;7(4):1566-1570。https://doi.org/10.54361/ajmas.247490引言铜绿假单胞菌是一种在医院环境中引起多种疾病的重要机会性病原体。其形成生物膜的能力、先天性耐药机制和对多种抗生素的获得性耐药性使治疗和管理变得复杂 [1,2]。抗生素耐药菌株的出现使这一问题更加严重,特别是在院内感染中,及时准确的鉴定对于成功治疗至关重要 [3]。传统的铜绿假单胞菌鉴定方法(包括基于培养的程序和生化测试)可能存在缺陷。据 Kidd 等人(2009 年)[4] 称,这些技术可能非常费力,并且可能无法总是区分密切相关的细菌种类。为了鉴定细菌,分子方法,特别是基于 PCR 的检测已经变得更加高效和准确 [5]。由于其高特异性和灵敏度,铜绿假单胞菌特异性 ecfX 基因已被建议作为基于 PCR 的检测的靶点 [7]。除了比较针对 ecf X 基因的 RT-PCR 与传统鉴定技术的有效性之外,本研究还尝试评估米苏拉塔医疗中心伤口感染中铜绿假单胞菌的发生率。
摘要:锌离子电池(ZIBS)由于其出色的安全性,低运营成本和环境优势而获得了非常有前途的可充电电池的认可。尽管如此,与水解物相关的固有挑战(包括水分解反应,蒸发和液体泄漏),固定的挑战阻碍了Zibs储能的广泛利用。幸运的是,固态电解质研究的最新进展在解决这些挑战方面具有巨大的潜力。此外,固态电解质的灵活性和新化学性质为其在可穿戴电子设备和多功能设置中的应用提供了更多机会。尽管如此,尽管近年来基于固态电解质的齐布斯的流行日益普及,但固态电解质的发展仍处于早期阶段。弥合存在的巨大差距在固态Zib成为实际现实之前至关重要。本评论介绍了各种类型的ZIB固态电解质的进步,包括纤维分离器,无机添加剂和有机聚合物。此外,它讨论了固态电解质的性能和影响。最后,它概述了固态Zibs开发的未来方向。
和自我增殖并增加CAR-T细胞。它引起了人们的关注,作为一种开创性的治疗方法,将导致以前无法治愈的淋巴瘤患者长期缓解约50%。 *2全基因组crispr筛选:通过准备和表达每个基因的大约3-5个引导性RNA,大约在一个细胞中表达的每个基因,每个细胞中大约一个遗传功能丢失。之后,如果我们进行一些细胞选择并比较前后的导向RNA的数量,我们可以看到,导向RNA数量增加对于细胞选择是有利的。在这种情况下,用肿瘤细胞反复刺激了CAR-T细胞,并在之前和之后进行了比较,因此,如果发现越来越多的引导RNA是靶基因,则很明显,CAR-T细胞没有优势。
摘要:生物表面活性剂是由微生物产生的两亲性表面活性分子,可以降低表面张力和界面张力。本研究重点研究了铜绿假单胞菌、藤黄微球菌和粘质沙雷氏菌产生的生物表面活性剂的生长、产生和特性。研究了这三个分离株的生长动力学和生产动力学。从生长动力学和生产动力学发现,铜绿假单胞菌的最大生物量和生物表面活性剂产量在28小时,藤黄微球菌在24小时,粘质沙雷氏菌在120小时。生物表面活性剂的HPLC分析显示,主峰和小峰的保留时间不同,这是因为样品在柱上停留的时间不同,这取决于其化学组成。本研究表明,铜绿假单胞菌、藤黄微球菌和粘质沙雷氏菌产生的生物表面活性剂被鉴定为糖脂。
研究小组假设,Na+转运VoV1-ATPase可能是VRE存活的重要酶。这种酶起到钠泵的作用,在肠道的碱性环境中将Na+输出出细胞,从而维持体内平衡并使细菌生长(图1a)。这种蛋白质存在于多种能在碱性环境下生长的致病菌中,但在动物、植物以及乳酸杆菌、双歧杆菌等有益菌中却不存在,因此抑制该蛋白质的化合物有望成为新型抗菌药物。 因此,我们假设,如果我们能够找到一种化合物来抑制这种 Na + 转运 V o V 1 -ATPase 的功能,我们也许能够抑制 VRE 的增殖,并且我们从广泛的化合物库中寻找抑制剂。
丁香假单胞菌引起的疾病 Reyhaneh Ravanbakhshian-HabibAbadi、Mandana Behbahani*、Hassan Mohabatkar 伊斯法罕大学生物科学与技术学院生物技术系 摘要 丁香假单胞菌是一种革兰氏阴性细菌,可导致多种植物的多种疾病。抑制丁香假单胞菌生长的策略包括保护性措施;然而,由于其传播迅速,控制这种疾病很复杂。若干抗菌剂可以预防这种疾病,如化合物、生物制剂、次生代谢产物、纳米颗粒、噬菌体和抗菌肽 (AMP)。控制这种疾病最有效的方法是化学防治。使用铜化合物和抗生素是减轻溃疡病症状的常规做法。然而,由于化学品和杀菌剂造成的环境污染以及丁香假单胞菌不同致病变种的耐药性,需要其他的细菌病原体控制方法。在体外条件下,使用拮抗细菌的生物防治已显示出对抗丁香假单胞菌的良好效果。新的研究重点是利用植物的次生代谢产物来控制植物疾病。研究表明,当精油被像中孔二氧化硅这样的纳米粒子保护着免于降解和蒸发时,可以提高它们的抗菌活性。使用纳米粒子,尤其是银,是控制丁香假单胞菌的一种合适策略。然而,高浓度的银纳米粒子是有毒的。建议使用噬菌体和 AMP 作为控制农业细菌感染(包括丁香假单胞菌)的替代品。噬菌体和次生代谢产物的联合治疗已显示出更高的功效,有可能克服抗药性。然而,噬菌体和 AMP 价格昂贵且有限。最后,使用低浓度的次生代谢产物和纳米粒子具有经济效益和抗菌活性,而没有植物毒性。关键词:生物制剂;次生代谢产物;纳米粒子;噬菌体;抗菌肽简介 丁香假单胞菌是一种革兰氏阴性微生物,可导致植物发生各种疾病,包括一些水果、谷物和花卉,导致斑点、斑块和枯萎病等疾病 [1, 2]。丁香假单胞菌有两个有组织的生长阶段:附生阶段,此时细菌生活在植物组织的外部部分(通常在地上);内生阶段,此时细菌进入植物组织并接管细胞间质外体空间 [3]。宿主中形成的病变与群体感应控制的毒力因子有关 [4]。
1. 简介 生物炭是一种由生物废弃物在低氧或无氧条件下通过热解制成的生物产品(Lehmann 等人,2011 年)。生物炭对土壤和植物健康有多种有利影响,如提高土壤有机质含量(Chan 等人,2007 年)、土壤酶活性(Ma 等人,2019a、2019b)、土壤阳离子交换和持水能力(Novak 等人,2009 年;Yu 等人,2013 年;Kul,2022 年)、微生物多样性(Egamberdieva 等人,2016 年;Egamberdieva 等人,2020a、2020b)和植物养分获取(Cao 等人,2017 年)。有许多关于生物炭施用对植物生长、土壤肥力、植物保护和植物抗逆性的积极影响的报道(Frenkel 等人,2017 年;Postma 和 Nijhuis,2019 年)。这种积极影响可以通过土壤物理质量的提高、土壤保水能力、养分利用率以及参与养分循环的微生物多样性来解释(Kolton 等人,2011 年;Egamberdieva 等人,2017 年;Khan 等人,2021 年)。一些报告显示更高的微生物活性
