奥兰多,佛罗里达州。 (2024年6月21日) - 今天,在美国糖尿病协会®(ADA)第84届科学会议上,VX-880胰岛细胞疗法的1/2期前临床研究的新数据介绍了。 结果表明,VX-880减少或消除了1型糖尿病患者(T1D)对胰岛素使用的需求,表明VX-880干细胞衍生的胰岛可以恢复生理胰岛功能和血糖控制。 尽管使用了晚期糖尿病技术,但最近对1型糖尿病患者进行的调查显示,大约6%的人经历了复发性的严重降血糖事件,并损害了对低血糖的认识。 低血糖,称为低血糖,在1型糖尿病患者中很常见。 患有1型糖尿病的人可能会随着时间的流逝而对低血糖的认识受损,这意味着尽管血糖读数降至可能引起症状的水平以下,但他们可能不会感到症状。 如果未经治疗,这可能导致严重的降血糖事件(SHE),这些事件可能会呈现为混乱,昏迷,癫痫发作,心血管事件,甚至死亡。 目前,除外源性胰岛素以外,用于治疗该疾病的治疗方案有限,这对患有1型糖尿病的人产生了巨大的未满足医疗需求。 1/2期,开放标签的三部分研究招募了患有1型糖尿病的成年人,降低血糖意识受损,并且在筛查前的一年中至少有两个SHE。 该研究评估了VX-880的使用,VX-880是一种研究,同种异体,干细胞衍生的,完全分化的胰岛素产生的胰岛细胞疗法。奥兰多,佛罗里达州。(2024年6月21日) - 今天,在美国糖尿病协会®(ADA)第84届科学会议上,VX-880胰岛细胞疗法的1/2期前临床研究的新数据介绍了。结果表明,VX-880减少或消除了1型糖尿病患者(T1D)对胰岛素使用的需求,表明VX-880干细胞衍生的胰岛可以恢复生理胰岛功能和血糖控制。尽管使用了晚期糖尿病技术,但最近对1型糖尿病患者进行的调查显示,大约6%的人经历了复发性的严重降血糖事件,并损害了对低血糖的认识。低血糖,称为低血糖,在1型糖尿病患者中很常见。患有1型糖尿病的人可能会随着时间的流逝而对低血糖的认识受损,这意味着尽管血糖读数降至可能引起症状的水平以下,但他们可能不会感到症状。如果未经治疗,这可能导致严重的降血糖事件(SHE),这些事件可能会呈现为混乱,昏迷,癫痫发作,心血管事件,甚至死亡。目前,除外源性胰岛素以外,用于治疗该疾病的治疗方案有限,这对患有1型糖尿病的人产生了巨大的未满足医疗需求。1/2期,开放标签的三部分研究招募了患有1型糖尿病的成年人,降低血糖意识受损,并且在筛查前的一年中至少有两个SHE。该研究评估了VX-880的使用,VX-880是一种研究,同种异体,干细胞衍生的,完全分化的胰岛素产生的胰岛细胞疗法。参与者的平均年龄约为44岁,平均HBA1C 7.8%,每日总胰岛素每天使用约40个单位,并且在筛查前一年经历了两到四只SHE,所有参与者在基线时都无法检测到C肽 - 这是您的身体正在产生胰岛素的迹象。
β细胞功能障碍是糖尿病患者疾病进展的标志。研究一直集中在糖尿病发育过程中维持和恢复β细胞功能。这项研究的目的是探索人类胰岛中含有11A(Clec11a)的C型凝集素结构域的表达(CLEC11A),一种分泌的硫酸糖蛋白,并评估Clec11a对β细胞功能和体外增殖的影响。在这项研究中使用了这些假设,人类胰岛和人类βH1细胞系。我们确定了Clec11a在人类胰岛中的β细胞和α细胞中表达,但在内oc-βH1细胞中却没有表达,而在人类胰岛和Endoc-βH1细胞中都发现了CLEC11a的受体称为整合素亚基α11。用外源重组人Clec11a(RHCLEC11A)的长期治疗强调了葡萄糖刺激的胰岛素分泌,胰岛素含量以及来自人类胰岛和内c- H1细胞的增殖,这部分是由于转录因子MAFA和PDX1的强调表达水平。然而,在慢性棕榈酸酯暴露引起的β-βH1细胞中INS和MAFA的mRNA表达降低,只能通过引入RHCLEC11A来部分改善。基于这些结果,我们得出结论,RHCLEC11A促进了人β细胞中胰岛素的分泌,胰岛素含量和增殖,这与转录因子MAFA和PDX1的强调表达水平相关。clec11a可能会为糖尿病患者维持β细胞功能提供新的治疗靶点。
遗传关联研究已经确定了数百个与2型糖尿病(T2D)和相关性状相关的独立信号。尽管取得了这些成功,但鉴定遗传关联信号基础的特定因果变异仍然具有挑战性。在这项研究中,我们描述了一种深度学习(DL)方法,以分析序列变体对增强子的影响。专注于胰岛(T2D相关组织),我们表明我们的模型学习了胰岛特异性转录因子(TF)调节模式,可用于优先考虑候选因果变体。在与T2D和相关血糖性状相关的101个遗传信号中,在链接不平衡中发生多种变体,我们的方法提名每个关联信号的单个因果变体,包括先前显示的三种变体在胰岛含量与含量的细胞类型中改变了报告基因的活性。对于与血糖水平相关的另一个信号,我们使用胰岛β细胞系中的统计细胞映射测试所有候选因果变异,并显示出对模型定位变体TF结合的等位基因影响的生化证据。为了帮助未来的研究,我们公开分发了约6700万个遗传变异的模型和胰岛增强子扰动分数。我们预计,本研究中提出的DL方法将增强候选因果变异的优先级,用于功能研究。
UT西南医学中心致力于一个教育和工作环境,为大学社区的所有成员提供了平等的机会。作为机会均等的雇主,UT西南航空禁止非法歧视,包括基于种族,颜色,宗教,国籍,民族,性别,性取向,性别认同,性别表达,年龄,残疾,遗传信息,公民身份或退伍军人身份的歧视。要了解更多信息,请访问:https://jobs.utsouthwestern.edu/why-work-here/diversity-clusion。
尽管已经对1型糖尿病的遗传基础和发病机理进行了广泛的研究,但宿主对环境因素的反应如何可能导致自身抗体发展。在这里,我们使用纵向血液转录组测序数据来表征儿童在出现1型糖尿病链接胰岛自身抗体之前12个月内的宿主反应,以及匹配的对照儿童。我们报告说,伴有胰岛素特异性自身抗体的孩子首先与那些开发GADA自身抗体的人具有独特的转录pro漏洞。特别是,GSTM1的基因剂量驱动的表达与GADA自身抗体阳性有关。此外,与对照组相比,我们观察到单核细胞增加并在自身抗体阳性前9-12个月降低B细胞比例,尤其是在开发抗胰岛素抗体的儿童中。最后,我们表明,控制儿童的转纹符号与对肠病毒感染的强大免疫反应一致,而后来患有自身免疫性胰岛的儿童则没有。这些发现突出了病例和对照儿童之间的不同免疫相关的转录组差异,然后病例发展为胰岛自身免疫力,并发现后来发展胰岛自身免疫性的儿童中有效的抗病毒反应。
胰腺是涉及外分泌和内分泌调节的异分腺。胰腺的外分泌细胞占胰腺组织的90%以上,并将其分组为称为acini的结构(图1),其功能是与消化过程有关的酶的合成和分泌(胰腺酸脂肪酶,磷酸酶,磷酸酶,磷酸酶,核激酶)(jouveles)(jouvet)和estall,2017年,2017年。消化酶被胰腺导管树排入肠道,在那里它们有助于营养代谢。内分泌系统的功能单位约占胰腺的2%(人类成年人中的200万细胞),由兰格汉的胰岛或胰岛组成。它们是细胞簇,其大小从20至500μM不等,具有五种不同的细胞类型:α-,β-,δ-,ε-和γ(PP)细胞(Jouvet和Estall,2017; Kumar and Melton,2003)。最丰富的细胞包括产生胰高血糖素的α-细胞和产生胰岛素的ß细胞。分别分别分泌生长抑制素,生长素和胰多肽的Δ-,ε-和γ细胞的一小部分。尽管仅占胰腺总质量的2%,但这些胰岛的胰腺血液供应约为15%,使其分泌的激素可以随时可以进入循环(Jansson等,2016)。在胰岛水平上,氧局部压(PO2)约为40 mmHg。
在过去的100年中,补充胰岛素一直是1型糖尿病(T1D)治疗的主要手段,其特征是兰格尔汉(Langerhans)胰岛胰岛中产生胰岛素β细胞的渐进性自身介导的损失在过去几十年中,在过去的几十年中,在Glucose Monitoring和Therapeut和The Thepapepation中的技术进一步促进了该技术的高度培训。然而,对于T1D患者而言,发病率,死亡率和生活质量仍然是挑战。胰岛移植已成功进行,但是有几个限制因素,例如缺乏尸体供体以及对终身免疫抑制治疗的需求。因此,对替代治疗方法有很大的医疗需求。在当前的综述中,总结了使用嵌合抗原受体(CAR)-T细胞和天然杀伤(NK)细胞的潜力的当前对T1D治疗的新方法的知识。
1型糖尿病是一种自身免疫性疾病,其中胰岛中的ß细胞被破坏。而不是治疗明显的糖尿病,停止β细胞破坏的进展将为患有1型糖尿病的人提供更高的生活质量。1型糖尿病的主要驱动因素是胰岛特异性的常规T细胞。这些细胞必须逃避多种耐受性机制,以控制健康个体的激活。调节T细胞抑制破坏胰岛细胞的T细胞功能,在这种耐受性中起着关键作用。 试图扩大个人自身的调节性T细胞存在多种挑战,而使用天然调节T细胞的临床试验仅在调节疾病方面取得了适度的成功。 与Tom Yankee(Kumc)和Ryan Fischer(CMH)合作,Markiewicz Lab开发了一种新方法,并为从原发性的传统人类T细胞中设计了一种新方法。 Markiewicz Lab使用糖尿病研究所授予的资金来建立一个体外系统,以测试这种新方法产生的工程调节T细胞是否可以限制人类胰岛特异性T细胞的破坏。调节T细胞抑制破坏胰岛细胞的T细胞功能,在这种耐受性中起着关键作用。试图扩大个人自身的调节性T细胞存在多种挑战,而使用天然调节T细胞的临床试验仅在调节疾病方面取得了适度的成功。与Tom Yankee(Kumc)和Ryan Fischer(CMH)合作,Markiewicz Lab开发了一种新方法,并为从原发性的传统人类T细胞中设计了一种新方法。Markiewicz Lab使用糖尿病研究所授予的资金来建立一个体外系统,以测试这种新方法产生的工程调节T细胞是否可以限制人类胰岛特异性T细胞的破坏。
摘要的目的/假设这项研究的目的是确定儿童早期的BMI是否受到COVID-19的大流行和遏制措施的影响,以及它是否与胰岛自动免疫的风险有关。在2018年2月至2023年5月之间的方法中,BMI和ISLET自身免疫的数据是从注册的1050个孩子中的1050个口服胰岛素试验中收集的,年龄为4.0个月至5.5岁。COVID-19大流行的开始定义为2020年3月18日,并使用严格的指数来评估遏制措施的严格度。胰岛自动免疫被定义为持久性的多个胰岛自动抗体的发展,或者开发了一个或多个胰岛自身抗体和1型糖尿病。多变量线性混合效应,线性和逻辑回归方法来评估COVID-19-19的大流行和严格指数对早期BMI测量早期测量的影响(BMI作为时间变化的变量(BMI),BMI在9个月的年龄和超级度量中的效果在9个月中评估了ISUR型号和Cox型模型的效果)自身免疫风险。结果COVID-19大流行与时间变化的BMI(β= 0.39; 95%CI 0.30,0.47)和9个月时的超重风险有关(β= 0.44; 95%CI 0.03,0.84)。During the COVID-19 pandemic, a higher stringency index was positively associated with time-varying BMI ( β = 0.02; 95% CI 0.00, 0.04 per 10 units increase), BMI at 9 months ( β = 0.13; 95% CI 0.01, 0.25) and overweight risk at 9 months ( β = 0.23; 95% CI 0.03, 0.43).较高的年龄校正BMI和9个月时的超重风险与高达5.5岁的胰岛自身免疫的风险增加有关(HR 1.16; 95%CI 1.01、1.32和HR 1.68、95%CI 1.00、2.82,分别为95%。结论/解释早期BMI在COVID-19-19大流行期间增加,并受到大流行期间限制水平的影响。控制了COVID-19大流行时,儿童早期BMI升高与儿童胰岛自身免疫的风险增加有关,患有1型糖尿病的儿童。
先前的研究表明,胰腺α细胞可以转化为β细胞,并且β细胞脱离分化,并且很容易获得2型糖尿病(T2D)中的α细胞表型。但是,参与α-to-β细胞和β-β-to-α-α细胞转变的特定人α细胞和β细胞亚型尚不清楚。在这里,我们已经整合了分离的人类胰岛和人类胰岛移植物的单细胞RNA测序(SCRNA-SEQ)和单核RNA-SEQ(SNRNA-SEQ),并为α-β细胞命运转换提供了更多洞察力。使用这种方法,我们进行了七个新颖的观察结果。1)有五个不同的GCG表达人的α细胞子序列[α1,α1,α2,α-β-转移1(AB-TR1),α-β-透射2(AB-TR2)和α-β(AB)群集(AB-TR2)和α-β(AB)群集,具有不同的人类小动物的转录组概况。2)AB亚集群显示多摩尼语基因表达,主要从SNRNA-SEQ数据推断出,暗示通过mRNA表达鉴定。3)α1,α2,AB-TR1和AB-TR2亚clus子富含特异性的α细胞功能的基因,而AB细胞富含与胰腺祖先和β细胞途径相关的基因; 4)提取的α-和β细胞簇的轨迹推理分析以及RNA速度/PAGA分析表明,AB对α-和β-细胞的分叉过渡潜力。5)基因通用性分析识别Znf385d,TRPM3,CASR,MEG3和HDAC9是朝向β细胞和SMOC1和SMOC1,PLCE1,PAPAPA2,ZNF331,ZNF331,ALDH1A1,ALDH1A1,SLC30A8,SLC30A8,BTG2,TM4SF4,TM4SF4,NRR4A1和PSC的轨迹的签名α细胞。6)显着地,与体外事件相反,AB亚集群在人类胰岛移植物中没有在体内鉴定,而轨迹推断分析表明,仅在体内从α到β细胞的单向转变。7)对成年人类T2D供体胰岛的SCRNA-SEQ数据集的分析表明,从与去分化或转化为α细胞的β-到α细胞的单向单向过渡。总体而言,这些研究表明,可以利用SnRNA-SEQ和SCRNA-SEQ来确定人胰岛内分泌细胞在体外,体内,非糖尿病和T2D中的转录状态的过渡。他们揭示了参与α-和β细胞之间互连的常见轨迹的潜在基因特征,并突出了研究人类胰岛在体内的单个核转录组的实用性和功能。最重要的是,它们说明了研究人类胰岛在自然体内环境中的重要性。