自聚集胶体可用于制备材料,我们研究了胶体水炭分散颗粒中水分蒸发后形成的长棒状聚集体。单分散水炭颗粒(100-200 纳米)由葡萄糖热液碳化合成,并通过透析纯化。在合成过程中,它们形成胶体分散体,在中高 pH 值和低离子强度下静电稳定。水分蒸发后,在中等 pH 条件下,分散体会形成宏观上较大的棒状物。这些棒状物在固-水界面处形成,与干燥方向正交。热解使棒状物具有高度多孔性,但不会对它们的形状产生任何影响。将 Cu-Si 合金反应性地渗入原位热解水炭和形成的三铜硅化物 (Cu 3 Si)-碳化硅 (SiC)/碳复合材料中。在此过程中,Si 原子与 C 原子发生反应,进而导致合金润湿并进一步与碳发生反应。在反应过程中,底层碳模板的形状保持不变,随后将形成的复合材料制剂煅烧成 Cu 3 Si-SiC 基碳基胶体颗粒棒状组件的复制品。使用透射和扫描电子显微镜以及 X 射线衍射研究了所形成固体的形状、成分和结构。从胶体科学的角度,可以进一步研究将合金反应渗透到自聚集和碳基固体中制备的材料,以及探索性地使用由真实生物质制备的水炭,探索与反应渗透有关的组成空间,以及材料在催化中的应用。2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
99M TC硫化物胶体是一种简单的技术,用于图像功能功能肝实质并确定尺寸,形状和腹部位置。Alter注射,胶体颗粒被RES的细胞吞噬。血液和血浆清除迅速发生,即- 注射后1小时的血浆浓度在人类中为0.005%。一旦胶体颗粒被RES细胞吞没,它们在扫描程序的持续时间内保持固定,因为胶体颗粒无限期保留在肝脏中,因此
石器时代、青铜器时代和铁器时代是人类开始掌握这些自然界材料的历史时期。但是,如果我们只需按照需要排列原子,就能制造出具有特定特性的新材料,那会怎样呢?早在 1960 年,理查德·费曼就挑战我们“自下而上”思考,通过引导和操纵单个原子的排列来创造新材料 1。他邀请我们进入一个全新的物理学领域,在那里我们可以前所未有地控制新材料的性质和功能。虽然这在当时只是一个遥不可及的梦想,但现代实验合成技术的进步和纳米技术的革命已经让我们非常接近实现这个梦想。实现这一目标的一个有希望的方法是分层自组装,单个粒子自发组织成有序结构,也是自然界形成复杂生物功能结构的最重要策略。在这个过程中,材料的制备过程是先将原子组装成分子,再将分子组合成更大的单元,尺寸从几纳米到几微米不等,最后让这些悬浮在液体中的胶体结构块自组织成三维有序结构。这些自组装材料具有数十至数百纳米尺度的明确结构和极大的表面积体积比——这些特性使它们不仅非常适合光电、等离子体和光子应用,还非常适合催化和储能。这一策略的成功实施取决于合成和制造新型纳米颗粒和胶体颗粒的能力。尽管最近的进展已经产生了各种各样的新结构单元,这些单元的相互作用潜力可以从硬的到软的排斥的、吸引的、偶极的、形状各向异性的、不均匀的甚至自推进的,但尽管人们为开发新的合成路线付出了巨大的努力,但与化学家的分子“工具包”相媲美的无数可能的胶体结构单元中只有一小部分被制造出来。 提供更多关于胶体相互作用细节的评论包括参考文献 2 – 7 。 为了加速材料科学的进步,最好用理论预测来指导实验工作,以便
从合成前进的角度来看,等离子调制需要更多的合成手柄,并且系统的发展至关重要。在文献中,对反应动力学的控制是从1、3和6个面上的PD立方体生长的Ag岛; 11和各种程度的AU - Ag Janus纳米结构是通过调节盐浓度合成的。12在我们的组中,我们表明,在AU种子上的Ag生长中,可以利用强配体分子的嵌入来调节Au - Ag界面能量,8 B 8 B提供了一系列从核心 - 壳到偏心的结构,然后to to to Janus结构具有不同表面覆盖率的结构。此外,在“耗尽球”中调节配体和反应物浓度,从而控制了Au纳米颗粒(NPS)8 A和纳米码的Au岛的数量。10
晶体生长过程。但由于胶体纳米晶体在与周围基质相互作用的同时经历快速成核和生长,因此晶体生长动力学难以控制。纳米晶体胶体溶液中微结构的形成通常用奥斯特瓦尔德熟化 (OR) 理论来解释。21,25,26 OR 机制被广泛用于解释纳米晶体的晶体生长,纳米晶体可产生直径较大的颗粒,通常在微米尺寸范围内。然而,在某些情况下,纳米晶体的晶体生长在纳米范围内通常无法用 OR 动力学来解释。27 – 29 在纳米尺度上,有证据表明晶体生长更受另一种机制的主导,称为取向附着 (OA),其中纳米晶体通过共享共同的晶体取向自组装成单晶。 30,31“ OA ”的概念最早由 Banfield 等人在研究 TiO 2 纳米晶体的水解合成时提出。32 从那时起,这种基于聚集的晶体生长概念就对构建纳米级材料很有吸引力。由于 OA 工艺通过增强自下而上的制造工艺实现了初级纳米晶体的自组装,因此它可以生产出具有多种特性的新型结构,不同于相应的块体材料。特别是,OA 工艺已被证明是一种制备各向异性纳米结构的有效方法,其中纳米晶体种子的附着总是引导自组装到一个取向,从而产生一维纳米线或纳米棒。33 – 35 在 OA 机制中,晶体生长速率与表面能呈指数相关。晶体生长沿特定晶面进行,这取决于与晶体面相关的相对比表面能。36 各个面的表面能差异会导致较高表面能平面生长得更快,而较低表面能平面则作为产品的面。例如,研究表明,由于 [001] 和 [101] 面之间的表面能差异,金红石 TiO 2 纳米晶体通过沿 [001] 方向融合纳米晶体形成一维项链状纳米结构,从而促进 OA 机制的定向晶体生长。32 在另一项最近的研究中,实时观察到了由 OA 机制引导的氢氧化铁颗粒的形成,证明了晶体生长过程中纳米晶体的旋转和晶体取向。 37 OA 还被证实可用于制备 ZnO 纳米棒、38 MnO 多足体、39 稀土金属氧化物纳米颗粒 40 以及具有各种形貌的混合氧化物纳米结构。21 尽管 OA 指导合成了具有各种形貌的形状和尺寸控制的金属氧化物和混合氧化物纳米结构,21 在OA驱动的湿化学合成中构建尺寸控制的金属氧化物纳米线的例子非常少。41,42
摘要:短波红外胶体量子点 (SWIR-CQD) 是能够跨 AM1.5G 太阳光谱进行收集的半导体。当今的 SWIR-CQD 太阳能电池依赖于旋涂;然而,这些薄膜的厚度一旦超过 ∼ 500 nm,就会出现开裂。我们假定刮刀涂覆策略可以实现厚 QD 薄膜。我们开发了一种配体交换,并增加了一个分解步骤,从而能够分散 SWIR-CQD。然后,我们设计了一种四元墨水,将高粘度溶剂与短 QD 稳定配体结合在一起。这种墨水在温和的加热床上用刮刀涂覆,形成了微米厚的 SWIR-CQD 薄膜。这些 SWIR-CQD 太阳能电池的短路电流密度 (Jsc) 达到 39 mA cm − 2,相当于收集了 AM1.5G 照明下入射光子总数的 60%。外部量子效率测量表明,第一个激子峰和最接近的法布里-珀罗共振峰均达到约 80% 这是在溶液处理半导体中报道的 1400 nm 以上最高的无偏 EQE。关键词:红外光伏、量子点、配体交换、刀片涂层■ 介绍
活性胶体是能够自推进的粒子,能在微观尺度上将化学能转化为定向的机械运动 [1]。它们已成为活性物质领域的典范,因为它们表现出相变 [3] 和动态结晶 [4] 等突发行为 [2],也是研究非平衡微观热机的基础 [5–8]。人们已投入大量精力开发一个框架来理解活性物质,并将其与随机热力学联系起来 [9–13],将经典热力学的概念扩展到非平衡系统和个体轨迹。这种方法的一个普遍局限性是,由于热噪声和活性噪声不能沿轨迹明确分离,因此熵的产生不能完全推断 [14]。尽管如此,随机热力学有潜力推动该领域从研究活性物质的特定现象学模型转向开发驱动活性系统的通用热力学框架。活性物质系统在广泛的空间和时间尺度上无处不在[15–17]。在纳米尺度上,单个分子可以充当活性物质[18, 19];在研究最深入的微观尺度上,生物和合成系统起着活性物质的作用[20–24];在中尺度和更大尺度上,动物[25]、机器人[26]、人类群体[27]等作为活性物质运行。所有这些系统所受控的底层物理过程千差万别,如湿与干[16, 28]、欠阻尼与过阻尼[29–32]、热与非热[33–35]等。然而,它们都有一个重要的共同点——非平衡动力学的出现是因为活性物质系统中的每个元素都会消耗能量并耗散
摘要:利用自组装技术控制胶体纳米粒子沉积是一种很有前途的技术,例如,可用于制造微型电子产品,它弥补了自上而下和自下而上方法之间的差距。然而,选择目标表面的材料和几何形状以获得最佳沉积结果是一项重大挑战。在这里,我们描述了一个基于 Derjaguin-Landau-Verwey-Overbeek 理论的预测框架,该框架可以合理设计胶体纳米粒子沉积装置。该框架针对一个模型系统进行了演示,该系统由柠檬酸三钠稳定的金纳米粒子组成,这些金纳米粒子被导向硅基板上预制的 100 纳米以下特征。结合理论分析,给出了模型系统的实验结果,以评估其可靠性。结果表明,三维镍涂层结构非常适合吸引金纳米粒子,并且基于所提出的框架对特征几何形状的优化可以系统地提高成功沉积的粒子数量。 ■ 引言 纳米粒子(NPs)和簇的引导组装 1
Wolfgang Ostwald将1914年的胶体和界面研究描述为“被忽视的维度世界”,直到几年前,这一说法实际上才有其理由。但是我们实际上是通过胶体理解的?胶体是分布良好的单位,其尺寸从纳米到千分尺范围,并且具有高表面/体积比。它们在活泼的自然界(血液,牛奶,细胞)以及技术世界(颜色,墨水,药物),微电子或建筑材料中无处不在。因此,已经检查了胶体研究的许多方面。为什么一个研究所在11年前成立了该研究领域的基础知识?的化学和物理学都涉及分子水平(“分子科学”)和宏观级别(固体研究)上对结构的产生和理解。两者之间的长度尺度和层次结构本质上都被忽略了。今天,另一方面,我们发现了化学方面有强大的租户,可以准备更大的结构并控制其存储。此外,物理学学会了将宏观结构微型化,并在所有维度上都在网格上使用真空技术构建。1997年,这种“中间种族”成为公共,政治和社会现象,并记录在标语“ Nano Sessions”中。现在的渗透率如此之高,以至于公司将这个特殊科学领域理解为最重要的希望之一。这是1992年尚未预测的发展,但它已经以其中央的纳米科学活动证实了该机构。该研究所现在可以与德国和世界各地的其他活动竞争吗?这一判断无权授予我们,但我们还希望通过该BR和Shear介绍过去两年的研究活动之外的公众。胶体和界面的领域是高度多学科的,并触及了许多专业学科的特殊语言和知识文化,这些学科并不总是可以理解的。因此,我们在所有缩写的一般介绍之前,在其中工作和动机的工作方式,然后是简短的进度报告。了解一个充满不同印象的世界:生物相i的过程,自组织,具有以前未知分辨率的新测量技术,人工细胞的构建,新的理论方法,规模耦合和新的数值模型算法。