摘要:铁离子作为传统的高效芬顿反应催化剂,与过氧化氢反应产生羟基自由基,从而在废水中降解有机污染物。然而,在水溶液中,铁离子的化学稳定性较差,因此很难从反应培养基中恢复。我们提出,它们与双嗜嗜性块共聚物的络合可以导致形成具有改善化学和胶体稳定性的纳米催化剂。以不同的摩尔比与双嗜嗜性嵌段共聚物的溶液的溶液(即聚(氧化乙烷)-Block-Poly(丙烯酸)(丙烯酸)形成胶体结构的溶液,添加了铁离子。自发地形成高度单分散胶束,其水动力直径约为25 nm。通过结合多种技术,可以实现核心 - 壳体结构的精确描述。这些结构在3-7的pH范围内化学稳定,并通过萘酚蓝色黑色的降解成功地用作光纤维催化剂。与传统的同质芬顿反应相比,这些胶体结构具有改善的化学和胶体稳定性以及更高的可回收性。关键字:杂交Polyion复合物,胶束,块共聚物,照片芬顿,纳米催化剂,胶体
操作和应用 凝结和絮凝处理用于澄清水中的胶体含量过高的水。凝结中和胶体含量并通过添加试剂使其不稳定。絮凝将这些细小的固体颗粒聚集成薄片。然后可以使用砂滤将它们去除。这些剂量单元设计用于执行凝结和絮凝步骤。它们完整供应并可随时连接。单元的选择取决于要处理的装置类型及其流速。所有泵配件均随交付提供。
将纳米粒子用作癌症靶点首先要考虑其分散性和胶体稳定性。11–13 将合成的纳米粒子分散在生物水溶液(如 pH 7.4 的磷酸盐缓冲溶液和细胞培养基)中,以进行进一步的生物学评估。基本上,生物溶液中重新分散的纳米粒子不应聚集,聚集会导致体内实验中出现意外现象或不准确的结果。14–16 大多数没有任何稳定涂层材料的未涂层无机纳米粒子会因血液成分中的盐吸附调理素或高离子强度而出现絮凝的趋势。17,18 因此,保持纳米粒子在生物体液中的胶体稳定性将有机会提高静脉注射后的癌症靶向效率。纳米粒子在生物溶液中的流体动力学直径可以通过动态光散射(DLS)技术测量,是通过体外实验衡量其在各种生物环境中胶体稳定性的指标,对纳米粒子的生物行为预测有重要影响。
摘要:胶体粘土纳米片是通过由于其形状各向异性的形状晶体而在水中形成晶状体粘土矿物的分层晶体获得的。在液晶粘土纳米片上加载有机染料将启用新型的光子材料,其中负载染料的光函数由粘土纳米片的液晶度控制。然而,有机染料在纳米片上的吸附会使纳米片表面疏水,因此,纳米片的胶体稳定性丢失了。在这项研究中,通过将阳离子阳离子的染料染料夹在一对合成氟脱甲岩纳米片之间来克服这种缺点。这是通过制备Stilbazolium - 粘土第二阶段插入化合物,其特征是将染料阳离子插入Hectorite粘土的其他每个层间空间,在那里非中型的层间间空间由Na +离子占据。第二阶段的插入化合物是通过在所有层间空间中掺入Na +离子的母离子粘土矿物的部分离子交换获得的,并从Na +含有含有Na +的层间间空间分层,形成粘土纳米片,以夹层染料分子。染料 - 糖粘土纳米片的水性胶体形成胶体液晶,染料 - 丝晶液晶粘土纳米片对施加的交流电场做出反应,以平行于电场。粘土纳米片的电对准会诱导夹层sti菌分子的光吸收改变,这验证了构建粘土 - 有机杂交的刺激反应光子材料的策略。电场下染料 - 丝晶粘土纳米片的组装结构的特征是分配的离散粘土血小板,这与粘土纳米片的胶体液体晶体有些不同,而粘土纳米片的胶体液体均不具有染色器载荷,而没有巨型液体晶体域的特征,其特征在于宏观液体晶体域。■简介
异质结构将胶体纳米晶体变成多组分模块化构建体,其中不同的金属和半导体阶段的域是通过粘结界面互连的,是一种巩固溶液可加工的可加工混合纳米材料的先进繁殖方法,能够表达能够表达丰富的物理物质和全新的物理质量,并且具有全新的物理性和功能。以应对金属 - 官方导体纳米层结构的湿化合物合成所带来的挑战,并克服了基于部分化学范围的可用方案的一些内在局限性,创新的变换途径,基于部分化学化的范围,在标准种子生长方案的框架内建立了局部化学范围。这些技术涉及对预制的纳米晶底物的替代反应,因此具有可编程配置多样性的巨大综合潜力。本综述文章说明了迄今为止在金属 - 核导能器纳米层结构中取得的成就,其组件模块的定制布置通过转换途径的量身定制,这些途径利用了对单空和双金属种子的空间控制部分化学化的利用。在液体培养基中纳米层结构的演变基础的最合理的机制中讨论了这些方法的优点和局限性。强调了化学化的金属 - 纳米骨构结构的代表性物理化学特性和应用。最后,概述了领域的发展前景。
自聚集胶体可用于制备材料,我们研究了胶体水炭分散颗粒中水分蒸发后形成的长棒状聚集体。单分散水炭颗粒(100-200 纳米)由葡萄糖热液碳化合成,并通过透析纯化。在合成过程中,它们形成胶体分散体,在中高 pH 值和低离子强度下静电稳定。水分蒸发后,在中等 pH 条件下,分散体会形成宏观上较大的棒状物。这些棒状物在固-水界面处形成,与干燥方向正交。热解使棒状物具有高度多孔性,但不会对它们的形状产生任何影响。将 Cu-Si 合金反应性地渗入原位热解水炭和形成的三铜硅化物 (Cu 3 Si)-碳化硅 (SiC)/碳复合材料中。在此过程中,Si 原子与 C 原子发生反应,进而导致合金润湿并进一步与碳发生反应。在反应过程中,底层碳模板的形状保持不变,随后将形成的复合材料制剂煅烧成 Cu 3 Si-SiC 基碳基胶体颗粒棒状组件的复制品。使用透射和扫描电子显微镜以及 X 射线衍射研究了所形成固体的形状、成分和结构。从胶体科学的角度,可以进一步研究将合金反应渗透到自聚集和碳基固体中制备的材料,以及探索性地使用由真实生物质制备的水炭,探索与反应渗透有关的组成空间,以及材料在催化中的应用。2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
