间谍肽 - 13个氨基酸标签和间谍蛋白蛋白来自第二个免疫球蛋白样胶原蛋白粘附蛋白结构蛋白,源自pyogenes链球菌的纤连蛋白结合蛋白。胶原蛋白粘合剂结构域自然包含赖氨酸(LYS)侧链和天冬氨酸(ASP)的侧链之间的无肽内键[5,6]。通过拆分该域并进行碎片的合理工程,即肽,即包含反应性ASP残基的spytag和小蛋白质,即含有反应性Lys残基的spycatcher,是含反应性Lys残基和谷氨酸(GLU)残基所必需的,形成型催化剂时,将形成型三重时,该蛋白是键合的。间谍反应在pH,温度和缓冲液的不同条件下以高收率发生,并且自从其概念之后,这两个组件随后被优化,创建版本2和3(spytag2-spycatcher2,spytag3-spycatcher3),在该反应时间从小时缩短到5分钟[5]。
VWF 胶原蛋白结合谱 2 (1279) VWD 2N 型谱 2 (1088) 单个检测: VWF 抗原 (1062) VWF 定量多聚体 (1063) VWF III 型胶原蛋白结合 (1281) VWD 2N 型 (1089) VWF:GP1bM 活性 1 (1990) VWF 前肽抗原 (1282) VWF IV 型胶原蛋白结合 (1280) VWF 抑制剂组 (1050) 抗 VWF 抗体 IgG 和 IgM (1056) 特殊凝血 因子 II 活性 (1021) 因子 VII 抑制剂 (1075) 因子 XII 活性 (1121) 因子 II 抑制剂 (1025) 因子 X 活性 (1101) 因子 XII 抑制剂 (1125) 因子 V 活性 (1051) 因子 X 抑制剂 (1105) 纤维蛋白原抗原 (1508) 因子 V 抑制剂 (1055) 因子 XI 活性 (1111) 纤维蛋白原活性 (1011) 因子 VII 活性 (1071) 因子 XI 抑制剂 (1115) 凝血障碍 血栓性微血管病评估: ADAMTS13 评估 2 (1295) 遵循反射算法 单个 ADAMTS13 测试: ADAMTS13 活性 (1298) ADAMTS13 抑制剂 (1297) ADAMTS13 抗体 (1299) 血栓形成 蛋白 C 活性 1 (1031) 蛋白 S 活性 1 (1041) 蛋白 S 抗原总和游离 (1042) 蛋白 C 抗原 (1033) 蛋白 S 抗原游离 (1043)
摘要 目的:本研究旨在研究托法替尼抑制 Janus 激酶/信号转导和转录激活因子 (JAK/STAT) 通路对成纤维细胞培养中胶原生物合成的影响。材料和方法:BJ-CRL-1474®(皮肤)和 BRL3A®(肝脏)成纤维细胞培养物在合适的培养基中增殖。将托法替尼以 25、50、100、200、400 和 800 nM 的浓度施用于 96 孔烧瓶中增殖的成纤维细胞。使用酶联免疫吸附测定法测量金属蛋白酶组织抑制剂 1 (TIMP-1)、基质金属蛋白酶 3 (MMP-3)、转化生长因子 β 1 (TGF-β1) 和羟脯氨酸水平。结果:托法替尼对皮肤和肝细胞培养物有细胞毒性作用。托法替尼的细胞毒性作用始于 100 nM(p<0.05)。在 800 nM 时效果最强。托法替尼的时间依赖性细胞毒性作用在所有浓度下 72 小时后均显著高于 24 和 48 小时(p<0.05)。即使在 25 nM 的托法替尼浓度下,TGF-β1 水平也显著降低(p<0.05)。托法替尼给药后,MMP-3、TIMP-1 和羟脯氨酸水平显著下降(p<0.05)。结论:托法替尼以浓度依赖性方式抑制成纤维细胞培养物中的成纤维细胞增殖。然而,需要进一步进行广泛的动物和人体研究以确定这种影响的临床意义。
上下文:由于其在骨胶原降解中的著名作用,半胱氨酸蛋白酶组织蛋白酶K(CATK)代表了治疗骨质疏松症的主要且有希望的药物靶标。通过CATK和细胞外基质居住的糖胺聚糖(GAG)之间形成了三型螺旋型和II胶原蛋白中,这种独特的哺乳动物特异性有效地在I型和II型胶原蛋白内有效地促成了。不幸的是,在临床试验中开发了有效的CATK的有效现场定向的抑制剂,因为它们可能会干扰其其他生物学作用。有趣的是,CATK抑制剂Tanshinone IIA磺酸与远离其活性位点(靠近GAG结合位点)的Catk遥控器结合,并有选择地抑制胶原蛋白降解。当前所追踪的项目专门用于合成,生物学筛查以及新的硝化tanshinone衍生物作为有效CATK抑制剂的硅化研究。
组织化学:基本原理,糖原,DNA,血压素,胶原蛋白和粘蛋白的组织化学染色,观察和分析。免疫组织化学:基本原理,免疫 - 归化观察与DNA碎片化,细胞增殖和炎症标志物的分析。
营养不良的表皮溶解Bullosa(DEB)是一种由编码胶原蛋白VII的基因Col7a1突变引起的泡沫皮肤疾病。deb可以作为隐性deb(rdeb)或主导DEB(DDEB)遗传,并与高伤口负担相关。在DDEB和RDEB中的伤口和愈合的永久循环以及肿瘤腐蚀的微环境的形成。通过提高伤口愈合的质量来延长无伤口的发作,将为DEB的个体带来可观的好处。胶原蛋白VII的胶原域由82个框架外显子编码,这使得剪接调节疗法对DEB有吸引力。的确,反义寡核苷酸E的外显子跳过已经显示出对RDEB的希望。然而,反义寡核苷酸对DDEB的治疗的适用性仍未得到探索。在这里,我们开发了QR-313,这是一种适用的,有效的反义寡核苷酸特定靶向外显子73。我们显示了QR-313局部递送在Carbomer组成的凝胶中的可行性,用于治疗伤口,以恢复人类RDEB皮肤中胶原蛋白的丰度。我们的数据表明,QR-313还显示了外显子73突变引起的DDEB的直接益处。因此,可以使用相同的局部应用治疗方法来改善RDEB和DDEB中的伤口愈合质量。
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
摘要:成骨不全症 (OI) 是一种遗传性疾病,其特征是骨质疏松、骨质严重脆弱和骨矿物质密度降低。它主要是由基因突变引起的,例如负责合成 I 型胶原蛋白的 I 型胶原蛋白 α 1 链 (COL1A1) 和 I 型胶原蛋白 α 2 链 (COL1A2)。值得注意的是,90% 的 OI 病例是由显性遗传基因引起的,例如 COL1A1 或 COL1A2 ,而只有 10% 的病例是由 23 个隐性基因引起的。本综述总结了与不同类型 OI 相关的基因。本综述还强调了周期性双膦酸盐治疗对 OI 患者的重要性,以改善骨矿物质量、活动性评分,降低骨折率并减少疼痛发作。本综述的目的是深入了解该疾病的管理政策,为临床医生/研究人员提供知识,帮助他们对 OI 类型进行分类,并最终寻找更有效的治疗策略。此外,本综述提供的信息可能有助于改善 OI 患者的管理、诊断准确性和治疗计划,以改善患者的预后。