为了简化人力资源管理并降低成本,现在越来越多的控制塔被设计为远程控制,而不是直接植入机场。这个概念被称为远程控制塔,它提供了一种“数字”工作环境,因为跑道上的视图是通过位于实际机场的摄像头远程广播的。这为研究人员和工程师提供了开发新颖交互技术的可能性。但这项技术依赖于视觉,视觉主要用于向操作员提供信息和交互,而现在视觉已经变得超负荷。在本文中,我们专注于设计和测试依赖于人类听觉和触觉的新型交互形式。更准确地说,我们的研究旨在量化基于空间声音和振动触觉反馈的多模态交互技术对改善飞机定位的贡献。应用于远程塔环境,最终目的是增强空中交通管制员的感知并提高安全性。在模拟环境中,通过涉及 22 名空中交通管制员,比较了三种不同的交互模式。实验任务是通过两种可见性条件,利用听觉和触觉定位不同空域位置的飞机。在第一种模式(仅空间声音)中,声源(例如飞机)具有相同的放大系数。在第二种模式(称为音频焦点)中,
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
两项研究(使用波音 777 和 737 模拟器)检查了机组人员在低能见度滑行操作中使用增强型飞行视觉系统 (EFVS) 的情况。25 名机组人员在以下组合下完成了 21 个短距离滑行场景:跑道视距(RVR:300、500 和 1000 英尺);平视显示器上的 EFVS(开/关);机场基础设施 - 3 个级别。使用 EFVS 产生的路线偏差较少,大多数是在 300 英尺 RVR 处使用边灯和标准中心线或使用 LVO/SMGCS“增强功能”(没有中心线灯)的路线。转弯角度越大、能见度越低,行驶速度越慢。机组人员大多数时候都能检测到右侧障碍物,检测到左侧障碍物的几率是右侧障碍物的两倍。无论是否使用 EFVS,机组人员在大转弯(>90 度)和右转弯时路线偏差较大,可能是因为转弯时失去了视觉参考。提供了有关 EFVS 对低能见度滑行的好处和局限性的建议,并建议进行进一步研究。
航空业已见证了许多新型航空电子系统(例如,姿态指示器、无线电导航、仪表着陆系统、近地警告系统)的引入,这些系统旨在克服飞行员外部能见度有限的问题。然而,能见度有限仍然是影响全球航空运营安全和容量的最关键因素。仅在商业航空业,全球超过 30% 的致命事故被归类为可控飞行撞地 (CFIT),即正常运转、机械完好的飞机撞上地形或障碍物,而机组人员由于缺乏外部视觉参考或地形/危险态势感知受损而无法看到。在通用航空业,最大的事故类别是持续飞行进入仪表气象条件,即非仪表等级飞行员继续飞入恶化的天气和能见度,导致视野消失,并可能撞上意外地形或空间迷失方向并失去控制。最后,影响机场延误的最大因素是能见度有限,当天气条件低于目视飞行规则操作时,能见度会降低跑道容量并增加空中交通分离所需的距离。