现在将地球和物体视为一个系统,并假设没有其他外力作用于系统。那么引力就是内部保守力,在运动过程中对物体和地球都做功。当物体向上运动时,系统的动能会减小,主要是因为物体的速度减慢了,但地球的动能也会有不可察觉的增加。地球动能的变化也必须包括在内,因为地球是系统的一部分。当物体返回到其原始高度(与地球表面的垂直距离)时,系统中的所有动能都会恢复,尽管只有极小一部分被传输到了地球。
直到 1924 年,原子过程中能量守恒定律的严格有效性才受到严重质疑。当时,为了解决当时存在的光的波动性和粒子性之间的严重冲突,玻尔、克拉默斯和斯莱特提出了一个否定该定律的理论。该理论(我们将其称为 BKS 理论)假定,原子系统在激发态下会持续发射辐射场,而不是仅在系统跃迁到较低能量状态时才发射。如果辐射频率合适,落在第二个原子上的辐射场会使其有可能跃迁到更高能量状态。该理论认为第二个原子跃迁到更高能量状态和第一个原子跃迁到较低能量状态之间不存在巧合,但除了这个巧合问题之外,它得出的结果与其他辐射理论的结果一致。因此,新理论不保证单个原子过程的能量守恒,但当大量原子过程发生时,它保证了统计守恒。新理论提出后不久,Bothe 和 Geiger 以及 Compton 和 Simons 就用实验检验了其关于电子散射辐射的预测。两种情况下的结果都不利于新理论,并支持能量守恒。此后不久,海森堡和薛定谔发现了新的量子力学,并发展了这种理论,以便在不背离能量守恒的情况下摆脱波与粒子冲突的困境。因此,人们发现 BKS 理论与实验不一致,不再需要理论考虑,因此被抛弃了。R. Shankland 最近的一些实验工作改变了这种情况。Shankland 的实验以十年技术发展带来的更高精确度进行,他的结果与早期实验者的结果不一致。相反,他们不同意能量守恒定律,并要求他们的解释符合 BKS 理论。因此,物理学现在面临着必须做出重大改变的前景。
力方向上的距离。示例:两匹马拉着一辆临时雪橇上的一名男子。男子和雪橇的总质量为 204 公斤,雪橇和地面之间的摩擦力为 700 N。当马拉雪橇时,三条链条中的每一条都具有 396 N 的张力,并且相对于水平方向成 30.0° 的角度,它们将男子拉动了 20.2 米的距离。确定 A) 其中一条链条对雪橇所做的功,B) 其中一条链条对马所做的功,以及 C) 摩擦对雪橇所做的功。
摘要 . 量子力学中的不确定性问题通常被认为是经典力学和物理学在离散(量子)变化情况下的广义确定性,它被解释为一个唯一的数学问题,涉及一组独立选择与一个有序序列之间的关系,因此由选择公理和有序“定理”的等价性所调节。前者对应于量子不确定性,后者对应于经典确定性。无需其他前提(除了上述唯一的数学等价性)来解释量子力学的概率因果关系如何指的是经典物理学的明确确定性。同样的等价性是量子力学数学形式的基础。它融合了海森堡矩阵力学矢量的有序分量和薛定谔波动力学波函数的无序成员。这种合并的数学条件就是选择公理和良序定理的等价性,这反过来又意味着马克斯·玻恩对量子力学的概率解释。特别是,能量守恒的证明方式与经典物理学不同。这是由于所讨论的等价性而不是最小作用原理。人们可能涉及两种形式的能量守恒,分别对应于经典物理学的平滑变化或量子力学的离散变化。此外,这两种变化可以在统一的能量守恒下相互等同,并且要研究违反能量守恒的条件,从而指向能量守恒的某种概括。关键词:因果关系、选择和良序、决定论、量子力学的希尔伯特空间、不确定性、概率因果关系史前史、背景和上下文:不确定性是量子力学最引人注目和最基本的特征之一,因此甚至挑战或概括了精确和实验科学的理念。量子测量的任何单一结果从根本上来说都是随机的。描述仪器及其读数的经典物理学的光滑定律只能以这种代价与任何量子实体的离散量子变化统一起来。
本文从经典物理学和量子物理学两个角度讨论了熵和信息之间的深层联系。在退相干理论的背景下,探讨了系统间通过纠缠传递信息的机制。然后在信息获取的基础上引入了熵时间的概念,据认为熵时间实际上是不可逆的,并且与热力学第二定律和我们对时间的心理感知一致。这与参数时间的概念不同,参数时间是非相对论量子力学中物理状态的幺正演化的时间参数。从相对论的角度讨论了与这种信息增益相关的状态向量“崩溃”的非时间性质。还讨论了从主观和客观崩溃模型的角度对这些想法的解释。结果表明,在主观崩溃方案下能量守恒,而在客观崩溃下通常不守恒。这与后者本质上是非幺正的,并且能量守恒首先源于时间对称性这一事实相一致。
术语定义: 均质 异质 各向异性 各向异性 (奥德赛路径) (各向异性 尝试所有路径 => 水晶) (非各向异性 坚持一条路径 => 玻璃) 亚稳态平衡 程度,广泛:V,质量 密集:密度,温度 状态函数 T,P,r,G,H,S,… 第一定律,能量守恒 S dU = S dq + S dw = 0 内部能量,热量,工作 绝热,放热,吸热
该模型的厄米性保证了具有实特征值的能量守恒,但当量子系统与其环境交换粒子和能量时,该模型的厄米性就会失效。这种开放的量子系统可以用非厄米哈密顿量有效地描述,为量子信息处理、弯曲空间、非平凡拓扑相甚至黑洞提供了重要的见解。然而,许多关于非厄米量子动力学的问题仍未得到解答,尤其是在高维空间中。
摘要 . 本文从更广泛、更哲学的角度讨论了今年诺贝尔物理学奖,该奖项旨在表彰纠缠实验“打破贝尔不等式,开创量子信息科学”。该奖项以诺贝尔奖的权威性为“经典”量子力学之外的一个新科学领域赋予了合法性,该领域与泡利的“粒子”能量守恒范式有关,因而也与遵循该范式的标准模型有关。人们认为,最终的未来量子引力理论属于新建立的量子信息科学。纠缠因其严格描述、非幺正性以及非局域和超光速物理信号“幽灵般地”(用爱因斯坦的华丽词藻)同步和传输超距非零作用而涉及非厄米算子,可以被认为是量子引力,而根据广义相对论,它的局域对应物就是爱因斯坦引力,从而开辟了一条不同于标准模型“二次量化”的量子引力替代途径。因此,纠缠实验一旦获得诺贝尔奖,将特别推出以“量子信息科学”为基础的量子引力相关理论,因此被认为是广义量子力学共享框架中的非经典量子力学,它遵循量子信息守恒而不仅仅是能量守恒。宇宙“暗相”的概念自然与已得到充分证实的“暗物质”和“暗能量”相联系,而与经典量子力学和标准模型所固有的“光相”相对立,后者遵循量子信息守恒定律,可逆因果关系或能量与信息的相互转化是有效的。神秘的大爆炸(能量守恒定律普遍成立)将被一种无所不在、无时不在的退相干介质所取代,这种介质将暗相和非局域相转化为光相和局域相。前者只是后者的一个整体形象,事实上它更多地是从宗教而不是科学中借用的。今年的诺贝尔物理学奖预示着一种范式转变,随之而来的是物理、方法论和适当的哲学结论。例如,科学的思维理论也应该起源于宇宙的暗相:可能只是由物理上完全属于光相的神经网络近似地建模。打破泡利范式带来了几个关键的哲学序列:(1)建立了宇宙的“暗”相,与“明”相相对,只有对“暗”相,笛卡尔的“身体”和“精神”二分法才有效;(2)量子信息守恒与暗相相关,进一步将能量守恒推广到明相,有效地允许物理实体“从虚无中”出现,即,来自暗阶段,其中能量和时间彼此不可分割;(3)可逆因果关系是暗阶段所固有的;(4)引力仅从数学上解释:作为有限性对无限性的不完整性的一种解释,例如,遵循关于算术与集合论关系的哥德尔二分法(“要么矛盾,要么不完整性”);(5)层次结构概念仅限于光阶段;(6)在暗阶段,量子的两个物理极端与整个宇宙的可比性遵循量子信息守恒,类似于库萨的尼古拉斯的哲学和神学世界观。关键词:经典量子力学、宇宙的暗相和明相、暗能量和暗物质、爱因斯坦、能量守恒、纠缠、广义相对论、量子力学中的厄米量和非厄米量、局域性和非局域性、泡利粒子范式、量子引力、量子信息、量子信息守恒、量子比特、标准模型、幺正性和非幺正性
时间反演性质与量子力学中蕴含的幺正理论相吻合,这一结果揭示了广义相对论与量子力学的不相容性,并导致了“信息悖论”。黑洞信息悖论已被列为本世纪十大物理难题之一,但物理学家们始终坚持信息永远不会丢失。二十多年后,Parikh和Wilczek建议将霍金辐射视为量子隧穿效应,并认为势垒由发射粒子自身的能量决定,因此粒子从黑洞辐射时满足能量守恒。他们用这种方法计算了粒子的修正辐射光谱