摘要:容量范围为 1-100 mAh 的紧凑型可充电电池适用于外形尺寸受限的可穿戴设备和其他高性能电子设备,这些设备的核心要求包括高体积能量密度 (VED)、快速充电、安全性、表面贴装技术 (SMT) 兼容性和长循环寿命。为了最大限度地提高 VED,我们开发了采用卷对卷工艺在超薄不锈钢基板(厚度为 10-75 μm)上制造的无阳极固态锂薄膜电池 (TFB)。高设备密度干法工艺图案化流程定义了可定制的电池设备尺寸,同时产生的废料可忽略不计。整个制造操作在传统的湿度控制洁净室中进行,无需昂贵的干燥室环境,并允许简化、降低制造成本。使用无阳极架构的这种扩大规模还可以实现与热预算兼容的封装和金属化方案,以与行业兼容的 SMT 工艺为目标。进一步的可制造性改进,例如使用高速测试,增加了大规模生产所需的总体要素范围。
摘要:重要的是研究形成的hastelloy-X合金的激光粉末床融合(LPBF)的微观结构和质地演变,以通过调节Hastelloy-X形成过程参数的调节来建立过程,微结构和性能之间的紧密关系。在本文中,hastelloy-X合金的成分是用不同的激光能密度(也称为体积能密度VED)形成的。研究了Hastelloy-X的致密机理,并分析了缺陷的原因,例如毛孔和裂缝。使用电子反向散射技术研究了不同能量密度对晶粒尺寸,质地和方向的影响。结果表明,随着能量密度的增加,平均晶粒尺寸,原发性树突臂间距和低角度晶界的数量增加。同时,VED可以增强质地。随着能量密度的增加,质地强度会增加。在96 J·mm -3的VED处获得了最佳的机械性能。
大量研究证实,LIC兼具锂离子电池和超级电容器的储能机制优势,被认为是最有前途的储能装置之一。6,7 LIC的储能过程包括电容性正极的离子吸收/解吸和电池性负极的Li +嵌入/脱嵌过程。两种电极工作电压范围的差异有效拓展了LIC的电位窗口,有利于提高能量密度。8 – 10然而,LIC电容性正极和电池性负极之间的动力学不平衡导致其在大电流充放电下性能显著下降。11,12因此,开发具有快速Li +的电池性负极材料十分必要。
阻止了锂硫电池的商业化,这些电池比当前的锂离子电池有很多好处,其比理论能量密度的5倍以上,更轻,更安全。lis的细胞目前显示出超过400WH/kg的重量能密度,并且容积能量密度为540WH/L。与当前的锂离子细胞相比,这几乎是重量级能量的两倍。在当前特斯拉电动汽车中可以找到的典型锂离子电池具有重量的能量密度〜220WH/kg。•高级移动性分析(AMAG):预测潜在
统计绩效期:10/2/2020-9/30/2023 DOE预算:$ 2,400K的成本份额:$ 60万美元的里程碑1:下降的最有前途的热化学材料,循环后,且能量密度低于100 o C,能量密度低于500 kWh/m 3。2021年3月的里程碑2:合成和优化的复合TCM,包括一个多孔支撑矩阵和惰性粘合剂,在2000年周期后实现热可靠性> 90%,能量密度> 250kWh/m 3。Sep 2022里程碑3:开发反应堆原型,并用以下属性演示反应器水平的性能:能量密度> 200 kWh/m 3,热可靠性> 90%> 90%> 200个循环。(正在进行的)2023年6月
但能量密度低导致续航里程不足。因此,电池可能适合弥补电力供应的短暂缺口。1然而,对于长途旅行,需要其他提供更高能量密度的存储技术。一个有趣的选择是氢动力列车。一些氢动力列车的示范项目已经实现。2尽管如此,压缩氢气的能量密度对于许多应用来说仍然不足。LOHC技术是一种有前途的克服这一问题的方法。3-5LOHC(液态有机氢载体)通过可逆催化加氢以化学键合形式储存氢。特别是,铂催化剂在LOHC释放氢气方面表现出良好的性能。6巨大的优势在于它可以储存
比较锂离子和钠离子电池的能量密度的图显示,锂离子电池的能量密度比钠离子电池更高。锂离子电池的能量密度范围为100至265 WH/kg,而钠离子电池的能量密度为80至150 WH/kg。这意味着锂离子电池更适合需要高能密度的高能应用。总体而言,该图支持锂离子和钠离子电池之间的特征比较,表明锂离子电池具有较高的能量密度,而钠离子电池的成本较低,循环寿命更长。在这些电池类型之间进行选择时,重要的是要考虑应用程序的特定要求以及性能,成本和安全性之间的权衡