锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环范围的运行温度和电荷(SOC)如何范围范围范围是从TESLA 3远程2018远程电池组中提取的汽车21700级电池的老化,该电池含有含有正电极的lini x Co y Al Z O 2(NCA)和负电极含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,由于在低SOC范围内循环时,负电极上的材料损失在负电极上。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。©2023作者。由IOP Publishing Limited代表电化学学会出版。这是根据创意共享属性的条款分发的一篇开放访问文章,非商业无衍生物4.0许可(CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nc-nd/4.0/),如果没有任何原始的工作,则可以在任何原始工作中更改,从而允许在任何媒介中进行过重用,分发,并不更改。要获得商业重复使用的许可,请发送电子邮件至permissions@ioppublishing.org。[doi:10.1149/1945-7111/aceb8f]
z电子邮件:anastasiia.mikheenkova@kemi.uu.se摘要锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环中的运行温度和电荷(SOC)范围如何影响汽车21700级电池的老化,该电池从Tesla 3远程2018远程电池组中提取,其中包含Lini X Co Y Al Z O 2(NCA)的正电极和负电极,并且含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,在负电极上的材料损失是由于在低SOC范围内循环时会有重要的贡献者。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。图形摘要
图 2a:极耳冷却测试设置(左)和热成像结果(右)。除了热成像测试外,伦敦帝国理工学院还研究了极耳冷却性能,其研究得出结论,极耳冷却可延长软包电池的使用寿命。虽然这项研究还提出,与不进行任何电池修改的底部冷却相比,极耳冷却并不是最佳的冷却解决方案,但已经进行了模拟并证明,与表面冷却相比,改变极耳部分和集电器厚度可以实现类似或更好的冷却性能。塞拉尼斯公司先进移动卓越中心的工程师与法国 CEA 研究所的热管理模拟部门合作,进行了一项全面的数值研究,旨在实现极耳冷却电池和底部冷却电池的类似冷却行为。底部冷却是当今软包电池的参考,在最新的车辆中可以看到,这些车辆实现了市场上最快的充电速度,例如保时捷 Taycan 或现代 E-GMP 汽车。图 3a 中的图表表示底部冷却电池在 2C 恒定速率下充满电时的参考情况的温升。电池为袋装形式,长 350 毫米,厚 10 毫米,高 100 毫米。边界条件是充电开始时温度为 25°C,电池除极耳所在位置外所有表面均无对流,热管理系统确保温度恒定
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
短脉冲激光-固体相互作用为研究复杂的高能量密度物质提供了独特的平台。我们首次展示了固体密度微米级 keV 等离子体在高达 2 × 10 21 W/cm 2 的强度下被高对比度、400 nm 波长激光均匀加热的现象。X 射线发射的高分辨率光谱分析表明,在 1 µ m 的深度内均匀加热至 3.0 keV。粒子内模拟表明产生了均匀加热的 keV 等离子体,深度达 2 µ m。靶内深处的显著体积加热和高度电离离子的存在归因于少数 MeV 热电子被捕获并在靶鞘场内进行回流。这些条件使得能够区分高能量密度环境中电离势降低的原子物理模型。
摘要:间歇性和瞬时可再生能源迫切需要发展具有高功率能量密度的本质安全电能存储技术。水系锂离子电池(ALIB)由于其不易燃的特性而成为一种很有前途的集成技术。然而,受阳极材料的限制,它们的能量密度与非水系电池的能量密度存在相当大的差距。在此,首次尝试将 Wadsley-Roth 相铌基氧化物(M-Nb-O)用于水系锂离子阳极。通过与 M-Nb-O 阳极(Zn2Nb34O87)的代表物配对,ALIB 的输出电压、能量密度和功率密度显着增加,长期循环寿命显着提高。单独来看,能量型全电池(NCM811// Zn2Nb34O87)可产生高记录密度能量(191.5 Wh kg −1),平均放电电压高达约 2.25 V,而功率能量型全电池(LiMn2O4//Zn2Nb34O87)在超高粉末密度 16 489 W kg −1 下表现出优异的倍率性能,能量密度高达 30.0 Wh kg −1。
主要碱性电池由于其低成本和安全性而被广泛用于便携式电子产品中。这些电池的消耗和处置促使其回收利用了显着的研究。减少碱性电池处置的另一种方法是通过增加其能量密度来延长其寿命。在这项工作中,通过通过多物理学建模确定最佳电极材料的最佳量,可以最大程度地提高AA主要碱电池的能量密度。在comsolMultiphysics®中开发了碱性电池的电化学模型,并用在恒定电阻载荷下获得的排放曲线(即电压与时间)进行了验证。然后对电极厚度进行优化,以最大化电池的能量密度,同时保持其外部尺寸。能量密度相对于电极孔隙率和界面区域的灵敏度。电化学模型能够复制在250 mA恒定电流放电下获得的放电曲线。通过减小锌阳极的厚度,能量密度最大化。但是,这会导致阳极在电流收集器附近溶解,并可能损害电池中的电连续性。增加阳极厚度可防止当前收集器的溶解,但在电池中增加了质量。这项研究的结果可用于开发更长的碱性电池。此外,可以通过考虑热效应或修改以帮助开发可充电碱性电池来改进该模型。
ITHIUM-ION电池(LIBS)是为便携式电子和电动汽车提供动力的主要能量存储技术。但是,它们目前的能源密度和成本可能不满足不断增长的市场需求1 - 3。电池500财团提出需要达到500 WH kg-1的细胞级特异性能量,而电动汽车4的包装级成本低于100美元(kWh)-1。因此,探索新的电池化学物质超出了传统的LIB系统,这是必要的,紧急的5、6。表1比较了几种常用的充值电池系统的重量能量密度,相应的驾驶距离和成本,例如铅酸,镍卡达米(NI – CD),镍 - 金属氢化物(NI-MH),Libs,Libs,Advanced Libs and Advanced Libs and Lith-Sulfur(Lith-Sulfur(Libs))。当前的LIB具有150–250 wh kg-1的细胞水平能量密度为电动汽车提供300至600 km的驱动器范围(例如,特斯拉电动汽车中的LIBS具有〜250 WH kg-1的细胞级能量密度为〜250 WH kg-1),可实现500英里驱动器驱动器的频率,可用于合理驱动距离尺寸,以使距离型号均可合理驱动器尺寸尺寸。这是由于相对较低的容量(≤220mAh g-1)和常规锂过渡金属氧化金属(LMO)阴极的重量,这限制了Li Metal-LMO全细胞(未来LIBS)的能量密度几乎不超过500 WH kg-1。由于硫阴极的多电子氧化还原反应,li – s bateries提供了高理论特异性能量为2,567 WH kg-1,而全细胞级别的能量密度为≥600WH kg-1。尽管出色,硫磺7的低成本和丰度,Li – S电池为远程电动汽车8的下一代电池系统提供了巨大的潜力。已经做出了大量的研究工作,以解决LI – S电池中的物质挑战,以增强电化学的表现。这些努力包括使用多孔碳/极性宿主来减轻9-11,三维阴极的多硫化物溶解,以增强电子/离子电导率和可容纳体积的变化12、13,宿主和人造固体电解质对称间相设计,用于保护Li anodes 14、15,以及对电动机,二线材料和现有的16型固定器和现有的固定剂和现有的固定材料和现有的16型固定剂,现有的固定剂和现有材料。
分别是 a + b + c - 、 a + a + c - 、 a + b + b - 、 a + a + a - 、 a + b - c - 、 a + a - c - 、 a + b - b - 、 a + a - a - 、 a 0 b - b + 和 a 0 b - c + 。 54 , 58 , 59 斯托克斯