图1。(a)单层(1L)Mose 2和Res 2晶体结构。顶部面板显示侧视图,底部面板显示了晶体结构的顶视图。侧视图显示了这些分层材料中偶极子的面内方向的示意图。(b)样品1(S1)的Res 2 -Mose 2异质结构的光学图像。插图是样本侧视图的示意图。(c)来自Mose 2,Res 2和HS区域的拉曼光谱。HS拉曼光谱由单个1L区域的不同振动模式组成。(d)在透明蓝宝石基板上制成的类似异质结构的三个不同区域的吸收光谱数据(样品2,S2)。Mose 2 A和B兴奋峰清晰可见,RES 2用箭头标记较低的能量吸收峰。HS光谱由两个1L区域的峰组成。
碘化物类似物的晶体结构表明:• 萘发色团彼此垂直 • 相邻萘的 pi 轨道之间的电子相互作用非常小
2021年8月发表的有关气候变化的IPCC报告提供了一个明显的提醒,人类活动无疑负责地球上的全球变暖和不断变化的环境状况。1这样说,全球政府和公司对净零排放目标的越来越多的承诺既令人鼓舞,这既令人鼓舞,即现在已经了解了世界气候危机的现实,同时也急剧提醒,如果全球温度的升高要限制为本世纪的1.5 o o c。许多机构对实现这一目标进行了各种途径的详细分析,最新的是IEA的“净零”报告。尽管IEA分析仅提出了实现零净目标的潜在途径,但它强调了更普遍的观点,即接下来的三十年将需要大幅度减少和/或撤离,这反过来又需要无与伦比的投资和国际合作水平,因为这是“我们时代最大的挑战([和需要)所能使我们的能源系统的最大变化,这是我们的经济体系的不足。 2
值得注意的是,除了激子基态漂白剂外,界面三重能量转移的每种化合物都在能量上有利,在较长的波长(大约450 - 650 nm)以外的较长波长处表现出广泛的光诱导吸收(PIA)特征。在图2 B中为选定样品显示了此波长范围的扩展视图。对于每种富含溴化物的化合物,广泛的PIA特征是长期寿命的,并且在瞬态吸收设置订立的5 ns窗口范围内不会完全衰减。然而,纯碘化物化合物(1,5 NDA)PBI 4的瞬态光谱仅包含激子漂白剂,并且在更长的波长下没有明显的PIA。至少在定性上,这些模式表明长寿的PIA可能与萘三胞胎物种有关。该分配与以前的微秒瞬时吸收研究一致,该研究是根据萘的浓缩,三联敏化溶液进行的,其中作者在450 - 650 Nm区域中观察到与单性链接的450 - 650 NM区域中具有与单烯烯型Naphthalene Treepemere excimerersecimerer的450 - 650 Nm区域的广泛交流荷兰转移吸收带。28在含有thieno [3,2- b]硫烯-2噻吩-2甲基铵阳离子(结构上与萘)中的RP 2D钙钛矿中也观察到了类似的广泛PIA特征,并分配给有机分子的三重态兴奋。5基于我们的实验观察结果以及与文献中的示例的这些比较,我们认为450 - 650 nm探针范围内的宽阔而长的PIA与萘三胞胎物种有关。
在过去的十年中,人们对 DNA 激发态动力学的认识取得了很大进展。[1] 在此背景下,理论研究既集中于单个核碱基的光物理性质,也集中于两个或多个碱基组装体中的相关相互作用,这些研究已成为探索 DNA 激发态衰变机制的有力工具。与单重态激发态相比,我们对三重态激发态的能量和动力学的认识仍然主要局限于单个碱基的性质。[2] 因此,尽管三重态-三重态电子能量转移 (TET) 可以引发 DNA 中的光毒性反应 [3-4],例如胸腺嘧啶环丁烷二聚体的形成 [5],但人们对决定天然 DNA 中三重态命运的核碱基 p 堆叠中 TET 的电子相互作用强度和时间尺度知之甚少。因此,由于三重态激发态的离域程度及其迁移的大致时间尺度存在根本的不确定性,通过超快光谱实验测量的衰变组分的分配仍然是一项艰巨的任务。 [1]
Xue Liu 1 , Jiajie Pei 1, 2 , Zehua Hu 1 , Weijie Zhao 1 , Sheng Liu 1 , Mohamed-Raouf Amara 1 , Kenji Watanabe 3 , Takashi Taniguchi 4 , Han Zhang 2 , Qihua Xiong 1, 5 * 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological大学,新加坡637371,新加坡。2 2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。通过使用微拉曼和光致发光光谱的组合,我们证明了调制起源于同时操纵电荷和/或在每个两个相邻层之间的能量转移。关键字:2D材料,范德华异质结构,拉曼和光致发光光谱,层间电荷和能量传递,带工程
在激光驱动惯性约束聚变 (ICF) 中,高强度激光用于驱动胶囊达到核聚变所需的压力和温度条件 [1]。这需要多束重叠的激光束在聚变胶囊周围的等离子体中传播。等离子体介导激光束之间的能量转移,这可能会破坏能量耦合和/或导致辐照不均匀性 [2, 3]。为了解释这种跨光束能量转移 (CBET),在用于模拟 ICF 实验的流体动力学代码中实现了线性模型 [4, 5]。预测这种能量转移的能力对于所有激光驱动 ICF 概念的成功都至关重要。光束之间的功率传输对等离子体条件很敏感。图 1(a) 突出显示了 CBET 对离子温度的敏感性,强调了准确的模型在确定等离子体条件以预测其对内爆的影响方面的重要性。等离子体条件的不确定性导致在建模和实验可观测量之间隔离误差的挑战 [6],这使人们很难理解线性 CBET 理论的局限性 [7]。粒子内模拟表明,当离子声波被驱动到大振幅时,非线性效应将改变能量传递,导致偏离线性 CBET 理论 [8, 9]。早期的实验似乎证实了这一情况,表明需要非线性物理来模拟相互作用,但这些实验主要依靠流体动力学建模来确定等离子体条件 [10, 11],而由于等离子体条件的不确定性,对饱和物理的理解难以捉摸。迄今为止最完整的研究使用电子等离子体波的汤姆逊散射来测量电子温度和密度,同时测量能量传递 [12, 13]。在较小的离子声波振幅(δn/ne < 1%)下,这些实验可以通过线性 CBET 理论很好地建模,但对于较大的离子声波
自旋向充电传输的有效转化,反之亦然,这与基于自旋电子产品的检测和生成自旋电流具有主要相关性。界面的界面对此过程有明显影响。在这里,Terahertz(THz)发射光谱拷贝用于研究大约50个原型F |中的超快旋转电荷转换(S2C)由铁磁层F(例如Ni 81 Fe 19,Co或Fe)和具有强(PT)或弱(Cu和Al)旋转轨道耦合的非磁性层N组成的n双层。改变f/n界面的结构会导致振幅急剧变化,甚至导致THZ电荷电流极性的反转。非常明显的是,当n是具有小旋转霍尔角的材料时,会发现对超快电荷电流的主要界面贡献。其大小约为在F |中发现的大约20% PT参考样本。对称性参数和第一原理的计算强烈表明,界面S2C来自界面缺陷处的自旋极化电子的偏斜散射。结果突出了界面S2C偏斜散射的潜力,并提出了一种有希望的途径,以从DC到Terahertz的所有频率下量身定制的界面增强S2C。
温莎大学化学与生物化学系,温莎401号,温莎,on,n9b 3p4,加拿大,加拿大N9B 3P4
摘要:我们研究了GA与Cu(001)表面和环境诱导的表面转移的初始阶段,以尝试阐明最近提出的Cu-Ga催化剂的表面化学,该催化剂最近提出了将CO 2氢化为甲醇的CO-GA催化剂。结果表明,GA在真空中沉积时很容易与Cu进行混合。然而,即使是气体环境中的氧气痕迹也会导致GA氧化,并形成二维(“单层”)GA氧化物岛,均匀地覆盖了Cu表面。在高度压力和温度下(0.2 MBAR,700 K),表面形态和GA的氧化状态保留在H 2中以及CO 2 + H 2反应混合物中。结果表明,在反应条件下,GA掺杂的Cu表面暴露了包括GAO X /CU界面位点在内的各种结构,必须考虑阐明反应机制。