随着近30年来电子信息的飞速发展,基于电磁的技术成果被广泛应用于人类生产生活的各个领域,电磁辐射(EMR)已成为现代文明中重要的新型污染源。EMR的生物学效应已引起全世界的广泛关注,其中EMR与人体器官特别是脑的可能相互作用是目前最为关注的。许多研究表明,神经系统是对EMR敏感的重要靶器官系统。近年来,越来越多的研究集中于EMR的神经生物学效应,包括神经递质的代谢和转运。神经递质作为突触传递的信使,在认知和情绪行为中起着至关重要的作用。本文总结了EMR对脑内神经递质代谢和受体的影响。
Qian Liu 1 , Yihang Jiao 2 , Weijian Yang 2 , Beiyao Gao 1# , Daniel K. Hsu 1 , Jan Nolta 3 , Michael Russell 1 , Bruce Lyeth 4 ,
Sayan Kahali a、Marcus E. Raichle a,b 和 Dmitriy A. Yablonskiy a* a 华盛顿大学医学院放射学系,美国密苏里州圣路易斯 63110 b 华盛顿大学医学院神经病学系,美国密苏里州圣路易斯 63110 *通讯作者:Dmitriy A. Yablonskiy,博士 华盛顿大学 Mallinckrodt 放射学研究所,4525 Scott Ave. 3216 室,密苏里州圣路易斯,63110 电子邮件:yablonskiyd@wustl.edu https:BMRL-DmitriyYablonskiy 电话:+1(314)362-1815;传真:+1(314)362-0526 关键词:功能连接、功能网络层次、脑细胞回路、定量梯度回忆回波 MRI、神经元、神经胶质细胞、突触 摘要 虽然在研究健康人脑和各种临床条件下的静息状态功能网络方面已经取得了重大进展,但有关它们与脑细胞成分关系的许多问题仍未得到解决。在本文中,我们使用定量梯度回忆回波 (qGRE) MRI 对人脑细胞组成进行体内定量映射,并使用来自人类连接组计划的 BOLD(血氧水平依赖性)MRI 静息状态数据来探索脑细胞成分与静息状态功能网络的关系。我们的结果表明,网络定义的单个功能单元中细胞回路之间连接的 BOLD 信号定义同步性主要与区域神经元密度有关,而功能单元之间的功能连接强度不仅受神经元的影响,还受脑组织细胞成分的神经胶质细胞和突触成分的影响。数据显示,这些细胞功能关系在脑活动的超慢频率范围 (0.01-0.16 Hz) 中最为明显,已知这与 BOLD 信号的波动有关。这些机制导致静息状态功能网络特性分布相当广泛。我们发现,神经元密度最高(但神经胶质细胞和突触密度最低)的视觉网络在单个功能单元中表现出最强的 BOLD 信号一致性,以及最强的网络内连接性。默认模式网络 (DMN) 位于频谱的相反部分附近,其 BOLD 信号的相干性相对较低,但细胞内容非常平衡,这使得 DMN 在大脑的整体组织以及健康和疾病中的功能网络层次结构中发挥重要作用。
遗传密码赋予大脑神经网络与生俱来的计算能力。但它是如何实现的却一直不得而知。实验数据表明,基因组通过成对连接概率对大量遗传上不同类型的神经元编码了新皮层回路的架构。我们为这种间接编码方式建立了一个数学模型,即一个概率骨架,并表明它足以将一套要求相当高的计算能力编入神经网络。这些计算能力无需学习即可产生,但很可能为后续的快速学习提供强大的平台。它们通过统计层面的架构特征而不是突触权重嵌入神经网络。因此,它们在低维参数空间中指定,从而提供增强的鲁棒性和泛化能力,正如先前的研究所预测的那样。
处理。t这里有越来越庞大的研究项目,其1个目标是模拟大脑区域甚至完整的大脑2,以更好地了解其工作方式。让我们引用3个立场:欧洲的人脑项目(1),大脑4通过疾病研究的综合神经技术映射5(大脑/思想)在日本或大脑倡议(3)中,在6个联合国家中。几种方法是可行的。有7种生化方法(4),它注定了与大脑一样复杂的系统8。已经研究了一种更具生物物理的方法,例如,请参见(5),其中已成功模拟了皮质桶10,但仅限于10 5 11个神经元。然而,人脑含有约10 11个neu-12 rons,而像marmosets(2)这样的小猴子已经具有13 6×10 8神经元(6),而更大的猴子(如猕猴)具有14 6×10 9神经元(6)。15为了模拟如此庞大的网络,减少模型可以制作16个。特别是,神经元没有更多的物理形状,并且仅由具有18个特定电压的网络中的一个点表示。Hodgkin-Huxley方程(7),可以重现物理形状,代表了离子通道的动态,21,但这些耦合方程的复杂性形成了22个混乱的系统(8),使系统非常前端,使该系统非常前端,以模拟23个巨大的网络23。如果忽略了离子通道动态,则24个最简单的电压模型是集成与火的模型(9)。25使用此类模型,超级计算机26可以模拟人尺度的小脑网络,该网络达到约27 68×10 9神经元(10)。28然而,还有另一种观点,这可能使29我们可以使用简化的模型模拟此类大型网络。30的确,人们可以使用更多随机模型来重现31神经元的基本动力学:它们的插图模式。32不仅连接图的随机化,而且33图表上的动力学使模型更接近手头的34个数据,并在一定程度上解释其可变性。35随机的引入不是新的,并且在包括Hodgkin-Huxley(11)和泄漏37
摘要 基于反向传播的现代深度学习方法越来越受欢迎,并已用于多个领域和应用领域。与此同时,还有其他鲜为人知的机器学习算法,它们具有成熟而坚实的理论基础,但其性能仍未被探索。类似大脑的贝叶斯置信传播神经网络 (BCPNN) 就是一个例子。在本文中,我们介绍了 StreamBrain——一个允许基于 BCPNN 的神经网络实际部署在高性能计算系统中的框架。StreamBrain 是一种领域特定语言 (DSL),概念上类似于现有的机器学习 (ML) 框架,并支持 CPU、GPU 甚至 FPGA 的后端。我们通过经验证明 StreamBrain 可以在几秒钟内训练著名的 ML 基准数据集 MNIST,并且我们是第一个在 STL-10 大小网络上展示 BCPNN 的人。我们还展示了如何使用 StreamBrain 进行自定义浮点格式训练,并说明了使用 FPGA 对 BCPNN 使用不同 bfloat 变体的影响。关键词 HPC、无监督学习、表示学习、神经网络、AI、新兴机器学习、BCPNN、GPU、FPGA
6 Dumas,G。等。 (2020)人类动态夹具揭示了连接实时社会协调和认知的额顶网络。 cereb。 Cortex doi:10.1093/cercor/bhz3086 Dumas,G。等。(2020)人类动态夹具揭示了连接实时社会协调和认知的额顶网络。cereb。Cortex doi:10.1093/cercor/bhz308
Neurolib是用Python编写的全脑建模的计算框架。它提供了一组神经质量模型,这些模型代表介质量表上大脑区域的平均活性。在整个脑网络模型中,大脑区域是根据生物学知情的结构连接(即大脑的连接组。Neurolib可以加载结构和功能数据集,建立一个全脑模型,管理其参数,模拟它并组织其输出以供以后分析。每个大脑区域的活性都可以转换为模拟的粗体信号,以根据功能磁共振成像(fMRI)的经验数据校准模型。使用参数探索模块可以进行广泛的模型分析,该模块可以在给定一组更改参数的情况下表征模型的行为。优化模块可以使用进化算法将模型拟合到多模式经验数据。neurolib设计为可扩展,以便可以轻松实现自定义的神经质量模型,为原型模型的计算神经科学家提供了多功能平台,管理大型数值实验,研究大脑网络的结构 - 功能关系,以及对全元模型的核中表现出色。
本文由荣誉计划在内布拉斯加大学 - 林肯大学提供免费和公开访问。已被授权的Nebraska@Nebraska University of Nebraska University of Nebraska -Lincoln的授权管理员所接受,内布拉斯加州林肯大学。
摘要 人类可以在抽象层面上进行推理,并将信息构建为抽象类别,但其背后的神经过程仍然未知。最近的实验数据表明,这可能涉及大脑的特定子区域,从中可以解码结构信息。基于这些数据,我们引入了组装投影的概念,这是在一般脉冲神经元网络中将结构信息附加到内容的一般原理。根据组装投影原理,结构编码组装会出现,并通过赫布可塑性机制动态地附加到内容表示上。该模型为解释大量实验数据提供了基础,也为模拟大脑的抽象计算操作提供了基础。