利用 Hololens 应用程序协助用户进行腐蚀检查 IETM 通过提供 IETM 步骤高效利用时间并提供免提用户体验 能够在检查期间拍摄图像(有或没有用户交互) 使用 CV/ML 算法检测腐蚀/其他特征 将检测到的腐蚀/特征显示在 3D 模型上 生成报告,其中包含检查摘要和检测到的问题
尽管基于生物生物的食物机械油脂#1和#2几乎可以在任何行业中使用,但它们特别适合润滑食品加工机械。两种油脂均已在NSF非食品化合物注册计划中注册为H1类别润滑剂,从而可以在与食物偶然接触的情况下使用它们。基于生物生物的食品机械油脂#1是NLGI 1级油脂,适用于低速轴承,振荡机械以及其他环境或低温应用。另一方面,基于生物生物的食物机械润滑润滑脂#2是NLGI 2级油脂,用于轴承,齿轮和机器滑梯。
摘要。腐蚀是一个严重的问题,通常很难完全消除。腐蚀过程经历了许多反应,这些反应改变了金属表面和局部环境的组成和特性。发现有机和无机抑制剂等几种抑制剂很昂贵,有毒,并对环境造成负面影响,这些抑制剂限制了这些抑制剂对腐蚀的使用。在过去的几年中,研究人员将药物用作腐蚀抑制剂。使用药物作为腐蚀抑制剂的使用是无毒的,便宜的,并且对环境的负面影响可忽略不计。通过使用不同类型的药物(褪黑激素,头孢氨酸,曲马多等)作为多种金属等多种金属(如碳钢,碳钢和铝钢)进行了几项研究。研究表明,发现这些药物的抑制作用在金属表面上形成不溶性复合物,从而保护其免受腐蚀。通过使用减肥技术(WL),电力动力极化(PDP)测量,电化学抗性光谱(EIS),电化学频率调制(EFM)和线性抗性等方法,研究了不同药物的腐蚀抑制效率。通过扫描电子显微镜,X射线衍射和原子力显微镜研究了在添加药物之前和之后金属的表面形态。最近通过使用过期的Dapsone药物作为针对低碳钢的腐蚀抑制剂进行了研究工作。腐蚀速率随着抑制剂浓度的增加而降低。腐蚀速率随着抑制剂浓度的增加而降低。研究表明,在低碳钢表面形成改良的戴蓬酮药物的吸附膜会导致质量和电荷转移的阻塞,从而进一步导致腐蚀抑制。头孢氨酸药物对碳钢腐蚀(CS)的影响已通过体重减轻和电化学方法检查。EIS研究表明,抑制过程是通过电荷转移。 使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。 总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。 本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。EIS研究表明,抑制过程是通过电荷转移。使用密度功能理论(DFT)方法进行药物分子的量子化学计算,并发现头皮肽是一种良好的耐碳钢腐蚀抑制剂。总体而言,研究泄露使用药物作为腐蚀抑制剂的使用不仅是保护金属免受腐蚀的最佳选择,而且还导致对过期药物的废物管理。本综述着重于近年来药物作为对各种金属的腐蚀抑制剂的利用。
在非水氧化还原流量电池中的交叉仍然是对这些设备的cy稳定性的关键挑战。使用双极氧化还原活性材料是缓解跨界的新兴策略。在本文中,我们报告了源自异地碱氮氧化物的双极rom的第一个例子,这是一个环类别,该类别在更常用的哌啶中给出了许多拟合,包括更大的稳定性和200mv更高的氧化潜力。通过便捷的合成转化,未取代的异丁氏硝氧化物被硝化,从而提供了一种新型的双极分子,5-硝基-1,1,1,3,3-四甲基甲硅烷基-2-羟基(NTMIO)。该材料是用电化学材料进行的,在该材料中给出了两个可逆峰,开路电压为2.1V。ntmio作为活性材料,在该模型中,对于超过70个循环,观察到氧化和还原氧化还原夫妇均观察到稳定的循环。
(8)就第(7)款而言,“化学”是指任何元素或化合物以其自然状态或任何生产过程获得的任何元素或化合物,包括任何杂质和任何添加剂,以保持化学物质的稳定性,但不包括任何可以分离的溶剂,而不会影响化学物质或改变其组成的稳定性。
湿度也是决定金属腐蚀速率的主要因素,因为水分提供了腐蚀反应所需的电解质。一般来说,腐蚀速率随着湿度的增加而增加。在没有其他电解质的情况下,发生严重腐蚀的临界相对湿度通常为 60%。3 此临界相对湿度可能因大气中存在的杂质而异。降雨可以增加或减少腐蚀过程。在可能积聚死水的区域,最有可能形成局部腐蚀电池。但是,雨水也可能将腐蚀性沉积物从金属表面冲走,从而降低腐蚀性。
腐蚀代表了使用材料的主要问题之一。因此,找到控制它的方法已成为使用有毒和危险技术的行业的永久且复杂的任务,为人类带来了巨大而严重的问题。天然聚合物已成为通过使用可生物降解,无毒,廉价且有效的材料来准确,充分缓解腐蚀的最有希望的替代品之一。在本研究中对牙龈和木质素作为自然腐蚀抑制剂的抑制效率进行了一系列研究,重点是避免酸性应用中传统腐蚀抑制剂对酸性应用中传统腐蚀抑制剂的环境影响。在结果中,在牙龈中从74%至97%中确定了抑制效率,木质素从79.9%到92%,表明,通常,随着抑制剂的浓度较高,效率会增加,但是,当温度的浓度较高时,体温升高会降低物理吸收的效率,从而降低了化学adsor的效率。
预防腐蚀方法之一是在腐蚀性环境中添加称为抑制剂的化合物。抑制剂可以是无机或有机化合物。但是,由于其毒性影响,这些化合物对人类健康和环境很危险。除了获得它们之外,困难和昂贵。出于这个原因,近年来许多研究的主题是许多研究的主题。科学家专注于一类新的抑制剂,例如植物提取物,水果和蔬菜提取物和精油。植物提取物是研究最多的这些抑制剂,称为绿色抑制剂。植物提取物的保护作用是由于其分子在金属表面上的吸附。他们通过阻止活性位点为金属提供保护膜。膜的形成为金属表面提供了腐蚀性介质的物理屏障,并提供了腐蚀性攻击的保护作用。铜是高贵的金属,由于该特性,它表明可以抵抗腐蚀。然而,某些条件会引起铜的腐蚀,例如污染的空气,氧化酸,氧化重金属盐,硫氨以及一些硫和氨和氨化合物。因此,对铜腐蚀的研究很重要。在这篇综述中,用植物提取物总结了研究,这对铜的腐蚀具有抑制作用。
生物腐蚀,也称为微生物学影响的腐蚀(MIC)是通过微生物引起的金属结构的降解,可以通过直接在金属表面上释放一组电化学反应来释放一组电化学反应,从而释放一组电化学反应。各种微生物能够引起这种类型的腐蚀,包括细菌,古细菌和真菌[1]。这些微生物通过这些微生物形成生物膜会增强微生物细胞对金属表面的粘附,并增加在该环境中不良条件下生存的机会。生物膜由不同种类的微生物形成,它们含有水,细胞外聚合物(EPS)和某些无机化合物[2]。MIC的过程受到Agarry等人在金属和环境之间的界面上某些物理化学参数的改变[3]。[2]。生物膜的产生对于通过增加疏水性和电荷来影响界面至关重要[4]。研究表明,管道或其他金属容器中的水增加了这些微生物的存在的机会[5,6]。这些微生物在石油行业的金属表面上的生长会导致石油产品的生物污染[7]。负责引起生物腐蚀的细菌的常见类型包括产生酸性细菌(APB),硫酸盐还原细菌(SRB),硫氧化细菌,铁细菌(氧化剂和还原剂)以及锰氧化细菌。但是,产生酸的细菌和其他包括细菌分泌有机酸,甲烷作和生物膜生产者[7,8]。