摘要背景:恢复手部功能是四肢瘫痪患者的首要任务,然而诊所以外获得专门治疗的机会有限。在这里,我们介绍了一种基于脑机接口 (BCI) 的手部治疗系统,该系统使用消费级脑电图 (EEG) 设备结合功能性电刺激 (FES),并评估其在职业治疗师 (OT) 和脊髓损伤 (SCI) 患者及其家人中的可用性。方法:用户:8 名亚急性 SCI 患者(6 名男性,2 名女性,年龄 55.4 ± 15.6 岁)及其护理人员(3 名男性,5 名女性,年龄 45.3 ± 14.3 岁);4 名 OT(4 名女性,年龄 42.3 ± 9.8 岁)。用户活动:研究人员培训 OT;OT 随后教护理人员为 SCI 患者设置系统以进行手部治疗。手部治疗包括尝试移动(AM)一只手以降低 8-12 Hz 频段 EEG 感觉运动节律的功率,从而激活 FES,引起腕部屈曲和伸展。技术:消费级可穿戴 EEG、多通道 FES、定制 BCI 应用。地点:医院内的研究空间。评估:佩戴时间、BCI 准确度、BCI 和 FES 参数可重复性、问卷、焦点小组和访谈。结果:有效性:BCI 准确度为 70-90%。效率:平均佩戴时间从初始课程的 40.5 分钟减少到最后一次训练课程(N = 7)的 27 分钟,在最后一次自我管理课程(N = 3)中下降到 14 分钟。BCI 和 FES 参数在各个课程中保持稳定。满意度:根据 QUEST 问卷的测量,SCI 用户和护理人员对该系统的平均满意度为 3.68 ± 0.81(最高 5 分)。实施 BCI-FES 技术的主要推动因素是“看到手在动”、“为所爱的人做一些有用的事情”、良好的计算机知识水平(脊髓损伤患者和护理人员)、“积极参与治疗”(OT),而主要障碍是设置的技术复杂性(所有组)和“缺乏临床证据”(OT)。结论:BCI-FES 有潜力被 SCI 或中风患者用作家庭手部治疗,只要它易于使用并提供支持。操作 BCI 的知识可以从研究人员转移到治疗师、用户和护理人员。试验注册于 2017 年 12 月 6 日在 NHS GG&C 注册;clinictrials.gov 参考编号 NCT03257982,网址:https://clinicaltrials.gov/ct2/show/NCT03257982。
在存在任何警报症状的情况下(例如明显的无意减肥,复发性呕吐,吞咽困难,出血或梅雷纳(Melena))以及当怀疑或存在胃溃疡时,应排除恶性肿瘤,因为治疗可能会减轻症状并延迟诊断。不建议将阿扎那韦与质子泵抑制剂共同给药(请参见第4.5节)。如果不可避免地会判断阿扎那韦与质子泵抑制剂的组合,则建议将临床监测(例如病毒负荷)与100 mg Ritonavir的400 mg剂量增加到400 mg;奥美拉唑20毫克不应超过。奥美拉唑作为所有酸化药物,可以减少由于低或achlorhydria而导致的维生素B12(氰callamin)的吸收。在长期治疗时体内储存降低的患者或危险因素的危险因素中应考虑这一点。奥美拉唑是CYP2C19抑制剂。在使用奥美拉唑开始或结束治疗时,应考虑与通过CYP2C19代谢的药物相互作用的潜力。在氯吡格雷和奥美拉唑之间观察到一种相互作用(请参见第4.5节)。这种相互作用的临床相关性尚不确定。作为预防措施,应劝阻奥美拉唑和氯吡格雷的同时使用。一些慢性病儿童可能需要长期治疗,尽管不建议进行。低镁血症严重的低磁血症已有报道,如Omeprazole治疗的患者至少三个月,在大多数情况下为期一年。 这种增长可能是低镁血症严重的低磁血症已有报道,如Omeprazole治疗的患者至少三个月,在大多数情况下为期一年。这种增长可能是可能会发生高镁血症的严重表现,例如疲劳,四分,del妄,抽搐,头晕和心室心律不齐,但可能会开始阴险地开始并被忽视。在大多数受影响的患者中,镁替代和停用PPI后,低镁血症改善了。对于预期接受长时间治疗的患者或可能引起高镁血症的高辛或药物(例如利尿剂)服用PPI的患者,医疗保健专业人员应考虑在开始PPI治疗和治疗期间定期测量镁水平。质子泵抑制剂,尤其是如果在高剂量和长时间内使用(> 1年),可能会适度增加髋关节,腕部和脊柱骨折的风险,主要在老年人或存在其他公认的危险因素的情况下增加。观察性研究表明,质子泵抑制剂可能会使骨折的总体风险增加10-40%。
背景:跑步提供了许多健康益处,但不幸的是,与跑步相关伤害的高风险(RRI),尤其是由于过度使用而导致的。疲劳监测方法,例如心肺运动测试(CPET)和乳酸浓度测量,对现实世界跑步条件是有效的,但不切实际。可穿戴传感器与新型机器学习(ML)算法相结合,为在现实的室外设置中进行连续实时的实时疲劳监测提供了有希望的替代方案。方法:十九个休闲跑者参加了这项研究 - 在第一实验部分中的第一和五。他们完成了三个不同的室外跑步课程:耐力,间隔和5公里的跑步。参与者配备了七个惯性测量单元(IMU),上面放置在胫骨,大腿,骨盆,胸骨和手腕上,以及心率监测器和智能手表,以收集运动学和生理数据。在第二个实验部分期间,在每次运行期间在特定点上使用感知的劳累(RPE)量表(0到10)的BORG等级测量疲劳,而在第一个实验部分中未收集此类反馈。一种随机的森林回归算法对第二个实验部分的已加工标记数据进行了训练,以每隔1秒的时间预测RPE。该模型是使用嵌套的一项受试者(LOSO)交叉验证框架开发的,并通过随机搜索进行了超参数调整。此机器学习框架被应用于选定的IMU传感器组合,以优化实用性并减少传感器设置。从第一个实验部分,在未标记的数据集上进一步验证了这些传感器配置的最佳模型。结果:单传感器配置(手腕)在RPE预测中达到了最佳性能,平均均方根误差(MSE)为1.89。两传感器设置(大腿)的MSE为2.26,而三个以上的传感器设置(胫骨,大腿和骨盆)记录了2.44的最高MSE。MSE为2.16的整体配置并没有胜过腕部传感器。在所有传感器配置中,耐力试验中的性能最高,然后进行间隔和5 km试验,5公里的试验显示了准确的预测最低的预测。结论:手腕单传感器配置达到了最佳性能,表现优于更复杂的多传感器设置。这些发现表明,更多的传感器不一定提高预测准确性,尤其是在稳定节奏的耐力运行中。未来的研究应着重于扩大样本量,整合更多的生物识别数据,并针对金标准疲劳评估方法(例如肌电图(EMG)和VO2 Max)验证该系统。
机器人系统基础单元 - I 简介:机器人解剖学 - 定义、机器人定律、机器人的历史和术语 - 机器人的准确性和重复性 - 简单问题 - 机器人的规格 - 机器人的速度 - 机器人关节和链接 - 机器人分类 - 机器人系统架构 - 机器人驱动系统 - 液压、气动和电气系统。单元 - II:末端执行器和机器人控制:机械夹持器 - 曲柄滑块机构、螺旋式、旋转执行器、凸轮式 - 磁性夹持器 - 真空夹持器 - 气动夹持器 - 夹持力分析 - 夹持器设计 - 简单问题 - 机器人控制 - 点对点控制、连续路径控制、智能机器人 - 机器人关节控制系统 - 控制动作 - 反馈装置 - 编码器、解析器、 LVDT - 运动插值 - 自适应控制。第三单元:机器人变换和传感器:机器人运动学 - 类型 - 2D 和 3D 变换 - 缩放、旋转、平移 - 齐次坐标、多个变换 - 简单问题。机器人中的传感器 - 触摸传感器 - 触觉传感器 - 近距离和范围传感器 - 机器人视觉传感器 - 力传感器 - 光传感器、压力传感器。第四单元:机器人单元设计和微/纳米机器人系统:机器人工作单元设计和控制 - 序列控制、操作员界面、机器人中的安全监控设备 - 移动机器人工作原理、使用 MATLAB 进行驱动、NXT 软件介绍 - 机器人应用 - 材料处理、机器装卸、装配、检查、焊接、喷漆和海底机器人。微/纳米机器人系统概述-缩放效应-自上而下和自下而上的方法-微/纳米机器人系统的执行器-纳米机器人通信技术-微/纳米夹持器的制造-爬壁微型机器人的工作原理-仿生机器人-群体机器人-纳米机器人在靶向药物输送系统中的应用。单元 - V:机器人编程-介绍-类型-柔性吊坠-引导编程,机器人坐标系统,机器人控制器-主要组件,功能-腕部机构-插值-联锁命令-机器人的操作模式,慢跑类型,机器人规格-运动命令,末端执行器和传感器命令。机器人语言-分类,结构-VAL-语言命令运动控制,手动控制,程序控制,拾取和放置应用,使用 VAL 的码垛应用,使用 VAL 程序的机器人焊接应用-WAIT、SIGNAL 和 DELAY 命令使用简单应用程序进行通信。 RAPID-语言基本命令-运动指令-使用工业机器人进行拾取和放置操作-手动模式、自动模式、基于子程序命令的编程。移动-主命令语言-介绍、语法、简单问题。VAL-II 编程-基本命令、应用程序-使用条件语句的简单问题-简单的拾取和放置应用程序。
•少年特发性关节炎(JIA):美国风湿病学院(ACR)和关节炎治疗JIA(2021)的指南(2021),这些基金会涉及寡头关节炎和颞下颌关节(TMJ)关节炎。对于少见性关节炎,建议在常规合成疾病抗疾病药物(DMARD)进行试验后使用生物学。9在TMJ关节炎患者中,预定的非甾体类抗炎药(NSAIDS)和/或关节内糖皮质激素建议是一线。如果反应不足或不宽容,生物学是一种治疗选择。此外,鉴于TMJ关节炎的影响和破坏性性质,经常适合生物学±常规合成DMARD(甲氨蝶呤首选)的快速升级。在这些准则中,没有应为JIA启动的首选生物学。Simponi(未指定的golimoumab,途径)是ACR/关节炎基金会的TNFIS之一,用于治疗Jia(2019)针对少年非系统性多性关节炎,Sacroiliisis和Enthesisis的TNFI。4 TNFIS是建议用于多重关节炎,s骨炎,肠炎的生物制剂。建议在其他疗法之后进行生物制剂(例如,遵循常规的活性多重关节炎的合成DMARD或遵循非甾体类抗炎性药物[NSAID],用于患有s骨炎或肠炎的活性JIA)。•银屑病关节炎:ACR(2019年)的指南建议其他生物制剂中的TNFI,用于用于治疗的牛皮癣关节炎患者,以及先前接受过口腔疗法治疗的患者。全部但是,在某些情况下,与其他常规疗法相比,具有生物药的初始治疗可能比其他常规疗法更喜欢(例如,如果涉及高危关节,例如颈椎,腕部或髋关节;高疾病活动;和/或被认为是判处高危关节损害的高风险)。5•类风湿关节炎:ACR(2021)的指南建议添加生物学或靶向合成DMARD,以服用最大耐受剂量的甲氨蝶呤,而甲氨蝶呤不适合目标。6•脊椎关节炎:强直性脊柱炎和非影像学轴向脊椎关节炎指南,美国ACR/Spondylitis Association/Spondylohrohrthis Researty and Heartn网络(2019)发表了ACR/Spondylishis Association(2019)。2在对TNFI的主要无响应之后,建议使用白介素(IL)-17阻滞剂;但是,如果患者是次要的无反应者,则建议在退出课堂上进行第二个TNFI。在患有TNFI禁忌症的患者中,建议使用IL-17阻滞剂,例如甲氨蝶呤或磺胺吡啶等传统口服剂。P Olicy S Tatement建议先验授权以进行辛波尼ARIA的处方福利覆盖范围。由于评估和诊断接受辛波内波尼ARIA治疗的患者以及不良事件和长期疗效所需的监测所需的专业技能,因此初步批准要求辛波诺尼ARIA应由或与专门处理该病情治疗的医生开处方或与医生进行协商。
背景:妊娠糖尿病(GDM)是孕妇及其子女的健康风险。针对GDM管理的远程医疗干预措施已被证明是有效的,但他们仍然需要医疗保健专业人员提供指导和反馈。 已提出了可穿戴传感器的反馈来支持GDM的自我管理,但尚不清楚如何在临床护理中设计自我跟踪。 目的:本研究旨在研究如何通过在没有医疗保健人员帮助的情况下对连续血糖和生活方式因素进行自我追踪来支持GDM的自我管理。 我们从自我发现(即,葡萄糖水平和生活方式之间的学习关联)和用户体验观点研究了全面的自我追踪。 方法:我们进行了一项混合方法研究,其中GDM(n = 10)的女性使用连续的葡萄糖监测仪(CGM; Medtronic Guardian)和3个体育活动传感器:活动手链(Garmin Vivosmart 3),髋关节worn传感器(UKK EXSED)和电压摄影传感器(hip-worn)传感器(ukk exsed)和电压摄影传感器(第一张)。 我们从传感器中收集数据,使用后,参与者参加了有关可穿戴传感器的半结构化访谈。 使用统一的技术接受和使用理论(UTAUT)问卷评估了可耐磨性传感器的可接受性。 此外,用3天的食物日记收集了母体营养数据,并使用日志收集了自我报告的体育活动数据。 我们确定了使用CGM和体育活动传感器的数据来支持GDM中的自我发现的新挑战。针对GDM管理的远程医疗干预措施已被证明是有效的,但他们仍然需要医疗保健专业人员提供指导和反馈。已提出了可穿戴传感器的反馈来支持GDM的自我管理,但尚不清楚如何在临床护理中设计自我跟踪。目的:本研究旨在研究如何通过在没有医疗保健人员帮助的情况下对连续血糖和生活方式因素进行自我追踪来支持GDM的自我管理。我们从自我发现(即,葡萄糖水平和生活方式之间的学习关联)和用户体验观点研究了全面的自我追踪。方法:我们进行了一项混合方法研究,其中GDM(n = 10)的女性使用连续的葡萄糖监测仪(CGM; Medtronic Guardian)和3个体育活动传感器:活动手链(Garmin Vivosmart 3),髋关节worn传感器(UKK EXSED)和电压摄影传感器(hip-worn)传感器(ukk exsed)和电压摄影传感器(第一张)。我们从传感器中收集数据,使用后,参与者参加了有关可穿戴传感器的半结构化访谈。使用统一的技术接受和使用理论(UTAUT)问卷评估了可耐磨性传感器的可接受性。此外,用3天的食物日记收集了母体营养数据,并使用日志收集了自我报告的体育活动数据。我们确定了使用CGM和体育活动传感器的数据来支持GDM中的自我发现的新挑战。结果:我们发现CGM是自我发现过程的最有用的传感器,尤其是当葡萄糖和营养摄入之间的学习关联时。这些挑战包括(1)在不同的应用中分散葡萄糖和体育活动数据,(2)缺乏重要的可跟踪特征,例如轻度体育锻炼和步行以外的其他身体活动,(3)在不同的可穿戴身体活动传感器以及CGMS之间的数据之间差异,CGMS和毛细血管的毛细血管葡萄糖计和(4)在跨性别和(4)差异的量化和(4)差异的量化和(4)差异。我们发现传感器的身体位置是测量质量和偏好的关键因素,最终是收集数据的挑战。例如,与髋关节磨损的传感器相比,使用腕部戴的传感器更长。一般而言,可穿戴传感器的接受程度很高。
计算机键盘的演变可以追溯到1868年克里斯托弗·拉瑟姆·肖尔斯(Christopher Latham Sholes)的打字机发明。雷明顿公司从1877年开始的打字机大众营销在其广泛采用中发挥了重要作用。几个技术进步,包括电视机和打孔卡系统,有助于早期计算机键盘的开发。1946年,ENIAC计算机在1946年使用了打孔器读取器,1948年BINAC计算机的机电控制打字机进一步巩固了这一连接。在1960年代引入视频显示终端(VDT)彻底改变了用户界面,使用户可以看到他们在屏幕上键入的内容。此启用了更快的数据输入,编辑和编程。通过电键盘传输的VDT的直接电子冲动可显着减少处理时间。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT,而Qwerty布局今天从sholes的发明中继承下来,今天仍然很突出。雷明顿公司开创了打字机的质量生产,导致标准计算机键盘的发展。根据传说,Qwerty布局是由Sholes和James Densmore开发的,以克服机械局限性。原始设计通过分开通用字母组合来最大程度地减少钥匙。尽管已经发明了其他布局,例如DVorak键盘,但由于其效率和熟悉程度,Qwerty仍然是最受欢迎的。新兴的电动打字机进一步合并打字机和计算机技术。皇家伯爵之家和埃米尔·鲍多特(Emile Baudot)等发明家改进了电视机机器,是键盘技术的突破。在1930年代,新键盘结合了打字机和电报技术,从而导致了关键系统的开发,这成为了早期添加机器的基础。关键技术被纳入ENIAC等早期计算机,而后来的设计具有电力打字机和磁带输入。到1964年,麻省理工学院,贝尔实验室和通用电气之间的合作导致了Multics的开发,Multics是一个分布的计算机系统,鼓励创建用于用户界面的视频显示终端(VDTS)。在计算机中打字技术的演变始于引入电动打字机,这使用户能够在视觉上看到他们正在键入的字符,从而使文本编辑和删除更加容易。这项创新还简化了编程,并使计算机更容易访问。早期键盘是基于电视机或关键的基础,但由于电力机械步骤减慢了数据传输的速度而有局限性。VDT技术和电子键盘的出现通过允许直接电子脉冲传输并节省时间来彻底改变计算。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT。1990年代看到了手持设备的出现,从HP95LX开始,该设备开创了移动计算。最初,手持设备具有小的Qwerty键盘,使触摸键入不切实际。随着PDA的演变为包括Web访问,电子邮件和文字处理,引入了笔输入。但是,一开始,手写识别技术还不够强大。键盘产生机器可读文本(ASCII),这对于索引和搜索至关重要。手写可生产“数字墨水”,它适用于某些应用程序,但需要更多的内存,并且不如数字键盘准确。早期PDA在商业上不可行。苹果公司于1993年发布的牛顿项目很昂贵,其笔迹认可也很差。研究人员Goldberg和Richardson开发了一种简化的系统,称为“ Unistrokes”,将字母转换为单笔票进行输入。1996年发布的棕榈飞行员引入了涂鸦技术,使用户能够输入资本和小写字符。其他非钥匙板输入包括MDTIM和JOT,但由于数据捕获的记忆力更多,而与数字键盘相比,它们具有相似的限制。计算机键盘的演变是一段漫长而有趣的旅程,跨越了近两个世纪。从带有电报机的不起眼的开端到我们今天使用的时尚,多功能设备,键盘进行了重大的转换以满足不断变化的用户需求。####早期的早期开发,电报机中使用了物理钥匙和开关来编码信息。这项技术为现代键盘奠定了基础。1800年代看到打字机和电报的进步,进一步完善了键盘设计。键盘布局继续随着发短信的兴起而继续发展,通常会利用Qwerty风格的软键盘。#### Qwerty和Qwerty布局以外的标准成为具有软键盘的标准,但是其他布局(例如Fitaly,Cubon和Opti)也存在。随着语音识别技术的提高,其功能已添加到小型设备中,但没有取代软键盘。####键盘的未来随着数据输入对于发短信和其他应用程序越来越重要,键盘设计正在调整。像KALQ键盘一样的创新,Android设备上可用的分屏布局,旨在改善拇指型体验。键盘的演变可以追溯到1868年,托马斯·休斯(Thomas Hughes)发明了用于电报的钢琴风格的键盘。早期的计算机终端出现在20世纪初期,加州海军研究人员和Konrad Zuse的可编程计算机使用旧打字机进行了修改。20世纪中叶锯键板成为计算中的主食,带有打孔机器是前体。创新在20世纪后期加速,包括IBM的Selectric打字机启发键盘设计和DEC的VT50终端,其中包含集成的键盘和屏幕。关键里程碑包括IBM PC普及了F键盘,苹果的Lisa引入了GUI和鼠标减少键盘依赖性,Microsoft的天然键盘会引发符合人体工程学设计的变化。21世纪带来了更多的多功能性和连接性,无线键盘超过了销售中的有线模型。在整个旅程中,打字仍然是输入命令和数据的有效和直观的方式,在20世纪后期推动了键盘无处不在。第一个大众市场打字机于1874年发布,将Qwerty布局固定为打字的标准。后来,IBM的Selectric(1936)引入了一种可以旋转和倾斜以打印字母的类型球,从而可以轻松更改字体。当计算机出现时,他们采用了打字机的打字机制,这些机制最终演变成专用的计算机键盘。在1950年代,打孔器被用于输入ENIAC等早期计算机的数据,这些计算机读取了用代表数据和程序说明的孔读取卡片。IBM 1050终端(1964)将打字机机制与桌子和调制解调器相结合,创建了一个集成的系统。DEC VT50(1967)带有键盘和CRT显示屏的视频终端,使用户可以在输出时看到输出。Xerox Alto(1970)介绍了图形用户界面(GUI),使用鼠标进行交互而不是文本命令,从而降低了键盘依赖性。尽管如此,键盘在个人计算中仍然很重要,尤其是在1970年代和1980年代PC进入房屋和办公室时。标准是由IBM PC的模型F键盘(1981)和Apple Lisa(1983)等有影响力的模型设定的,该模型集成了鼠标以进行图形相互作用。IBM模型M(1984)完善了PC键盘,确保了IBM PC和克隆的一致性。后来,微软引入了天然键盘(1994年),引发了人体工程学的设计趋势,而苹果简化了其iMac(1999)的简化键盘,开始向没有单独的光标垫或功能键的简约设计转变。开关测试人员有助于识别首选的机械开关。现代键盘不断发展,基于具有新功能的原始Qwerty布局。现代键盘的关键特征包括无线连接,专业,自定义,可移植性,RGB照明,集成输入和增强的键入功能。今天的键盘生态系统提供了针对特定用例的各种设计。喜欢重音字符,专门的软件从上下文定制中受益,以提高生产率。键盘配件增强了多功能性,人体工程学和样式:腕部休息会减轻压力,钥匙开关O形圈噪声噪音和自定义键盘个性化美学。人体工程学因素通过促进适当的姿势来减少键入应变:将键盘定位在肘部水平,避免弯曲手腕,将垫片用于笔记本电脑,并在长时间的课程后休息。遵循基本的人体工程学原理可以使计算机键盘长期安全使用。现在,让我们凝视着令人兴奋的键盘可能性:增强现实键盘,脑部计算机接口,智能手套键盘,触觉娱乐,灵活的电子墨水显示器,上下文自动版,无线功率和神经反馈。激进的新设计将与传统模型共存,因为核心机制已被证明是永恒的。由于其触觉效率,持久的键盘仍然是一个积分的计算机接口。我们可以以其他输入机制不切实际地将思想转变为命令和内容。早期计算机缺乏显示和鼠标,而键盘是唯一可行的界面。但是,即使出现了新的选项,键盘的生产力也会执行许多任务。计算机键盘由于其众多优势而仍然是计算中必不可少的一部分:由于它们在大多数计算机中的广泛可用性,它们熟悉,响应,多功能,生产力和无处不在。虽然语音或笔迹(如语音或笔迹)在某些情况下已成为可行的替代方案,但在键盘上打字的速度和准确性继续使其成为生产力的核心组成部分。人类与键盘之间的这种共生关系持续了近两个世纪,键盘适应和发展以适应不断变化的人类行为和技术进步。因此,键盘的设计反映了人类需求与技术能力之间正在进行的相互作用,这是无情驱动创新的缩影。