covid-19疫苗会导致淋巴结肿胀。在现代疫苗试验中,疫苗接种臂的腋窝肿胀或压痛是在剂量1和16%的参与者剂量1之后,疫苗接种臂的肿胀或压痛。对于辉瑞-bionntech疫苗,据报道腺病是疫苗组64名参与者的未经请求的不良事件,而安慰剂组2中有6个。试验中报告的腺病率是基于体格检查的;预计乳房X线摄影检测到的率可能会更高。实施质量疫苗接种可能导致乳房成像中腋窝病的检测增加。本文档为COVID-19和其他疫苗接种后的乳房筛查和管理腋窝腺病的安排和管理腋窝腺病提供了建议。这些建议是在与安大略省健康(安大略省癌症护理)临床,成像和初级保健线索协商时提出的,并考虑了最近可用的信息3,4,5。有关腋窝腺病管理的证据继续发展,随着新信息的出现,该指南可能会更新。以下建议适用于OBSP(平均风险)和高风险obsp参与者。
摘要全球COVID-19大流行激发了人们对疫苗快速开发以及动物模型的强烈兴趣,以评估候选疫苗的候选者并定义保护的免疫相关性。我们最近报道了小鼠适应的SARS-COV-2病毒菌株(MA10),可能会感染野生型实验室小鼠,促进呼吸道组织中的高水平病毒复制,以及严重的临床和呼吸症状,以及在模型系统中捕获的人类疾病中重要的临床和呼吸道症状。我们评估了新型恒河猴血清型52(Rhad52)疫苗针对MA10挑战的免疫原性和保护性效率。恒河虫载体的基线血清阳性低于人类或黑猩猩腺病毒载体,使这些载体具有吸引人的疫苗开发候选者。我们观察到Rhad52疫苗引起了鲁棒的结合和中和抗体滴度,它们与挑战后的病毒复制成反比。这些数据支持RHAD52疫苗的开发以及MA10 Challenge病毒在筛查新型疫苗候选物中的使用,并研究野生型小鼠中SARS-COV-2挑战的免疫机制。
摘要SARS-COV-2在全球造成了超过380万人死亡,并且迫切需要使用几种类型的Covid-19疫苗,包括腺病毒载体疫苗。但是,热不稳定性和预先存在的免疫力限制了其广泛的应用。为了绕过这些障碍,我们通过基于SAD23L载体(CAP)产生基于SAD23L载体的磷酸钙矿物质外观(CAP)来构建了一个自生物的腺病毒(SAD23L-NCOV-S-CAP),基于SAD23L载体载体,该载体具有SARS-COV-2 Spike-2 Protical Incordice polysiy(SS)。该SAD23L-NCOV-S-cap疫苗的结构特征,热稳定性,免疫原性并避免了先前的免疫力问题。在热稳定性测试中,SAD23L-NCOV-S-CAP可以在4 C下储存45天以上,26 C超过8天和37 C,持续2天。此外,SAD23L-NCOV-S-CAP诱导的较高水平的S特异性抗体和T细胞反应,并且不受先前存在的抗SAD23L免疫力的影响,这表明它可以用作对SAD23L-NCOV-SOV-SOV-S-S-S-S-SPRIMING启动疫苗的增强免疫。用SAD23L-NCOV-S-CAP疫苗促进的提升诱导的高滴度为10 5.01抗S1,10 4.77抗S2结合抗体,10 3.04伪病毒中和中和抗体(IC 50),IFN-C(1466.16 sfcs/10 6 6 sf)s pectiestiestss s s pectiestiest抗体(IC 50)和可靠的T-cell响应。总而言之,COVID-19疫苗SAD23L-NCOV-S-CAP的自我生物矿化改善了疫苗的效能,可用于预防人类的SARS-COV-2感染。
摘要 自从利用 CRISPR/Cas9 编辑 DNA 以来,基因治疗领域见证了基因编辑的巨大进步,为治疗囊性纤维化 (CF) 等疾病开辟了新途径。CF 是由囊性纤维化跨膜传导调节器 (CFTR) 基因突变引起的。尽管使用 CRISPR/Cas9 在体外进行基因编辑取得了成功,但在体内使用 CRISPR/Cas9 治疗 CF 肺病仍然存在挑战。将 CRISPR/Cas9 递送到肺部以及难以达到临床疗效所需的效率带来了新的挑战。病毒和非病毒载体已被证明可以成功地在体内递送 DNA,但 CFTR 的持续表达不足。在辅助依赖性腺病毒载体 (HD-Ad) 引入之前,使用第一代病毒载体治疗肺部遗传疾病的临床试验显示疗效有限。由于 HD-Ad 具有容量大、免疫原性低等优点,再加上 CRISPR/Cas9 系统的多功能性,将 CRISPR/Cas9 通过 HD-Ad 递送至气道用于肺部基因治疗具有巨大潜力。在这篇综述中,我们讨论了 CRISPR/Cas9 在 CF 基因治疗中的应用现状、该领域现有的挑战以及 CRISPR/Cas9 在肺部的存在带来的新障碍。通过对这些挑战的分析,我们提出了使用 HD-Ad 载体进行 CRISPR/Cas9 介导的肺部基因治疗的潜力,并以囊性纤维化肺部疾病为治疗模型。关键词:腺病毒,基因治疗,气道基因递送,Cas9,囊性纤维化
背景:溶瘤腺病毒介导的基因治疗是一种新兴的癌症治疗策略。但溶瘤腺病毒主要在肿瘤部位局部给药。静脉注射溶瘤腺病毒进行癌症基因治疗是一个亟待解决的问题。方法:构建携带抗p21Ras scFv的重组溶瘤腺病毒KGHV500,利用CIK细胞递送KGHV500。采用TUNEL、划痕愈合、MTT和Transwell侵袭实验检测KGHV500对肝癌细胞的体外抗肿瘤作用。采用裸鼠异种移植模型检测CIK细胞联合KGHV500在体内的抗肿瘤作用。此外,检测KGHV500在不同器官中的蓄积以评估其安全性。结果:KGHV500抑制肝癌细胞的迁移、增殖、侵袭并诱导其凋亡。在裸鼠异种移植模型中,携带KGHV500的CIK细胞能够到达肿瘤部位,发挥比CIK细胞或单独的KGHV500更好的抗肿瘤效果。此外,我们在裸鼠的不同器官中检测到了KGHV500和抗p21Ras scFv,对器官的影响很小。结论:我们通过将CIK细胞与表达抗p21Ras scFv的溶瘤腺病毒相结合,开发了一种治疗Ras驱动的肝癌的新策略。体内静脉注射携带KGHV500的CIK细胞可显著抑制肿瘤生长,对正常器官的影响很小,并且相对安全。
导致 COVID-19 的病毒会迅速复制。如果没有疫苗,你的身体必须识别病毒,学习如何对抗病毒并进行免疫反应。与此同时,病毒可能会复制到你的免疫系统无法处理的水平——这意味着你会感到不舒服。有了疫苗,你的身体可以更快地识别病毒并直接开始免疫反应。
随着精确肿瘤学的发展,患者及其家人通过筹款和竞选活动越来越多地参与了在较大的癌症慈善机构之外进行的筹款和竞选活动。在本文中,我们探讨了基于英国的访问拥护者的团结,网络和情感工作,并借鉴了九个倡导者的故事,其中包括对其社交媒体帖子的访谈和内容分析,以及在新闻,评论和筹款网站中对其案件的报道。我们将建立网络的情感和知识工作视为跨越消费者和激进议程,伪造的个人和集体目标以及对公共,私人和第三个部门的方向,这是确保支持和访问权限的一部分。通过这些各种实践,我们研究的参与者与其他患者和倡导者一起培养了个人优势和团结,因此从事自我和集体倡导与主流癌症慈善机构的共同倡导。
由新兴的SARS-COV-2冠状病毒威胁到全球公共卫生,迫切需要开发安全有效的疫苗, covid-19造成的大流行。 在这里,我们报告了新型复制缺陷性缺陷性腺病毒载体载体的临床前评估,该疫苗编码了SARS-COV2的融合前稳定尖峰(S)蛋白质。 我们表明,我们的疫苗候选者Grad-cov2在小鼠和猕猴中都具有高度免疫原性,引发了中和SARS-COV-2感染的功能性抗体,并阻止了与ACE2受体结合的尖峰蛋白,以及与鲁棒的Th1主导的细胞反应,在外围和Lung中。 我们在这里表明,融合前稳定的尖峰抗原在诱导ACE2交流,SARS-COV2中和抗体方面优于野生型。 面对以大规模疫苗制造的前所未有的需求,将不同的基因组缺失进行比较,以选择在搅拌储罐生物反应器中显示出最高生产率的载体主链。 该初步数据集将Grad-COV2识别为潜在的Covid-19疫苗候选者,在当前正在进行的I期临床试验(NCT04528641)中支持Grad-COV2疫苗的翻译。covid-19造成的大流行。在这里,我们报告了新型复制缺陷性缺陷性腺病毒载体载体的临床前评估,该疫苗编码了SARS-COV2的融合前稳定尖峰(S)蛋白质。我们表明,我们的疫苗候选者Grad-cov2在小鼠和猕猴中都具有高度免疫原性,引发了中和SARS-COV-2感染的功能性抗体,并阻止了与ACE2受体结合的尖峰蛋白,以及与鲁棒的Th1主导的细胞反应,在外围和Lung中。我们在这里表明,融合前稳定的尖峰抗原在诱导ACE2交流,SARS-COV2中和抗体方面优于野生型。面对以大规模疫苗制造的前所未有的需求,将不同的基因组缺失进行比较,以选择在搅拌储罐生物反应器中显示出最高生产率的载体主链。该初步数据集将Grad-COV2识别为潜在的Covid-19疫苗候选者,在当前正在进行的I期临床试验(NCT04528641)中支持Grad-COV2疫苗的翻译。
迫切需要针对SARS-COV-2开发有效的疫苗,该疫苗也解决了部署,公平通道和疫苗接收的问题。理想情况下,疫苗将防止病毒感染和传播以及预防199疾病。我们以前开发了一种基于口服腺病毒的疫苗技术,该疫苗技术可诱导人类的粘膜和全身免疫力。在这里,我们研究了一系列基于腺病毒的疫苗的免疫原性,这些疫苗表达小鼠中尖峰和核皮质蛋白的全部或部分序列。我们证明,与S1结构域的表达或稳定的尖峰抗原相比,全长,野生型尖峰抗原抗原在外围和肺部的中和抗体显着较高,当疫苗施用粘液剂时。抗原特异性CD4+和CD8+ T细胞是通过低剂量和高剂量的候选疫苗诱导的。这种全长的尖峰抗原加上核素腺病毒构建体已优先考虑进一步的临床发育。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 7 月 17 日发布。;https://doi.org/10.1101/2020.07.16.205088 doi:bioRxiv preprint