图1:RBP4 CRE -HM3DQ和RBP4 CRE -HM4DI DREADD激活A,B,兴奋性(蓝色)和抑制性(绿色)DREADD受体和实验程序的电生理验证。补丁钳电生理记录是连续进行的。在恒定的ACSF应用下,在5和10分钟下进行了两次基线记录,然后进行CNO给药,并在申请后2、5和10分钟进行三个记录,然后进行冲洗步骤。在最后一步中,获得了不同时间点的控制记录。c,RBP4 CRE -HM3DQ膜电压响应的代表性示例。d,CNO给药前后的输入输出曲线,以响应当前应用的增加。灰色代表,CNO给药后的蓝色痕迹。在RBP4 CRE -HM3DQ脑切片中CNO给药之前和之后,记录的神经元的膜电阻。基线和CNO管理之间没有显着差异(左)。CNO给药前后记录的神经元的静止膜电位。在CNO给药后,膜被概念性去极化(右)。n = 7只小鼠,单向方差分析通过邓内特的多重比较测试。e,RBP4 CRE -HM4DI膜电压响应的代表性示例。
植物皂苷(PMS)购自成都慕斯特生物技术有限公司(四川,中国),纯度≥98%。A549、95D、SPC-A1、H460和H292细胞购自美国典型培养物保藏中心(ATCC;美国弗吉尼亚州马纳萨斯)。RPMI-1640培养基购自HyClone公司(Cat#SH30809.01;美国犹他州洛根)。胎牛血清(ATCC 30-2020)购自赛默飞世尔科技公司(美国马萨诸塞州)。二甲基亚砜(DMSO)、1-溴-3-氯丙烷、异丙醇、乙醇、顺铂(DDP)和其他溶剂购自Sigma公司(美国密苏里州圣路易斯)。细胞计数试剂盒-8 (CCK-8)、0.25%胰蛋白酶、0.01 M PBS (粉末,pH7.2~7.4)、1%多聚甲醛、线粒体膜电位测定试剂盒(含JC-1)和100×青霉素-链霉素溶液均购自北京索莱宝科技有限公司(北京,中国)。B27、表皮生长因子 (EGF) 和碱性成纤维细胞生长因子 (bFGF) 均购自 Invitrogen 公司(CA,美国)。一抗,包括抗 Caspas-3 (Cat#ab13847)、抗 Caspas-9 (Cat#ab32539)、抗 SOX2 (Cat#ab93689)、抗 CD44 (Cat#ab216647)、抗
摘要:大脑中的神经元群体活动是空间域信息和时间域动态的综合响应。由于大脑的复杂性和硬件的局限性,对这种时空机制进行建模是一个复杂的过程。在本文中,我们展示了如何使用从大脑改编的信息处理原理来创建受大脑启发的人工智能 (AI) 模型并表示时空模式。通过使用脉冲神经网络设计微型大脑,可以证明这一点,其中激活的神经元群体表示空间域中的信息,而传输信号表示时间域中的动态。输入视觉刺激激发的空间位置感觉神经元进一步激活运动神经元以触发运动反应,从而导致机器人代理的行为改变。首先,模拟一个孤立的大脑网络,以了解从感觉到运动神经元的激发部分,同时绘制膜电位和时间之间的波形。还绘制了网络对刺激机器人身体运动的响应以展示表示。模拟显示了特定视觉刺激的反应如何改变行为,并帮助我们理解身体和大脑的同步。感知的环境和由此产生的行为反应使我们能够研究身体与环境的相互作用。
可兴奋细胞(如神经元和肌肉细胞)的膜电位经历了由一系列配体和电压门控离子通道介导的丰富动态变化。尤其是中枢神经元,它们是信息、感知和整合由突触输入介导的多个亚阈值电流并将其转化为动作电位模式的出色计算机。电生理学包括一组允许直接测量电信号的技术。有许多不同的电生理学方法,但由于果蝇神经元很小,全细胞膜片钳技术是记录来自单个中枢神经元的电信号的唯一适用方法。在这里,我们提供了果蝇膜片钳电生理学的背景知识,并介绍了解剖幼虫和成年大脑的方案,以及实现已识别神经元类型的全细胞膜片钳记录的方案。膜片钳是一种劳动密集型技术,需要大量练习才能成为专家;因此,应该预计学习曲线会很陡峭。然而,我们希望分享和传播神经元放电的即时满足感,因为需要更多的果蝇膜片钳来研究迄今为止未知的许多果蝇神经元类型的电特征。
哺乳动物的味觉感知源于挥发性物质的颗粒与味觉受体接触时产生的味觉感受器——味蕾中聚集的专门化学感受器,味蕾位于口腔内。味蕾簇位于小乳头上,根据其位置不同,乳头的形状和大小也不同。成年人有大约 10,000 个味蕾。每个味蕾内有大约 50-150 个杆状味觉细胞,它们将信息传递给神经元细胞,神经元细胞又将信息传递给大脑。五种味觉受体对食物或大气中存在的特定化学物质组作出反应。不同的味觉有不同的味觉阈值,对甜味和咸味的阈值最高,对苦味食物的阈值最低。味觉可以根据味觉区分机制分为两类。对于酸味和咸味,其机制分别基于氢离子和钠离子,通过改变受体的膜电位直接与离子通道反应 [18, 23]。对于甜味和苦味来说,G蛋白上存在着蛋白质受体点,这些受体点与味觉物质分子形成复合物后,会激活G蛋白,从而引发一系列化学变化[4]。这两种机制都会导致神经脉冲的激发,并传递到大脑。
摘要咖啡因是运动和运动中使用的主要细胞生成资源之一。以前,我们报道了中枢神经系统中通过神经元A 2a r拮抗作用的咖啡因的细胞生成机制[1]。现在,我们证明纹状体通过神经塑性变化来统治咖啡因的细胞生成作用。三十四个瑞士(8-10周,47±1.5 g)和二十四个C57BL/6J(8-10周,23.9±0.4 g)成年雄性小鼠在行为和电生理学上使用咖啡因和能量生理学研究,并在SH-Sy5y细胞中研究了咖啡因和能量代谢。全身(15 mg/kg,i.p.)或纹状体(双侧,15μg)咖啡因在开放场中是psy-刺激剂(p <0.05)和提高的抓地力效率(p <0.05)。咖啡因还将长期抑郁症(LTD)转移到纹状体切片中的增强(LTP),并增加了线粒体质量(P <0.05)和膜电位(P <0.05)(p <0.05)。我们的结果证明了纹状体在咖啡因的细胞生成作用中的作用,随着神经可塑性和线粒体代谢的变化。
麦角固醇过氧化盐(EP)已广泛研究其抗肿瘤活性。然而,由于其细胞内积累有限和水溶性差,其进一步的发展受到限制。在这项研究中,将新型的三苯基磷阳离子(TPP +)部分耦合到过氧化麦角固醇,以精确靶向肿瘤细胞线粒体。合成的MITO-EP衍生物Mito-EP-3A-3D表现出比EP母体更强的细胞毒性,并在癌细胞和正常胃皮细胞(GES-1)细胞之间选择性地表现出细胞毒性作用。最有效的化合物MITO-EP-3B在MCF-7(乳腺癌)细胞系中比麦角固醇过氧化物高9.7倍,并且表现出良好的选择性(SI = IC 50 GES-1/IC 50 MCF-7 = 4.04,IC 50:IC 50:抑制细胞生长的浓度)。此外,mito-ep-3b能够降低线粒体膜电位和诱导的活性氧的产生,并伴随着激活细胞色素C和BAX的表达,而Bcl-2表达则抑制了。分子机制可能是指线粒体凋亡途径。总体而言,上述结果激发了将MITO-EP-3B衍生物作为有效抗癌剂的进一步研究。
通过在人类诱导性多能干细胞衍生的心肌细胞 (iPSC-CM) 中进行精确的基因调节并使用可扩展的全光学电生理学平台进行后续表型分析,可以揭示基因-表型关系。近期 CRISPR 衍生的可逆基因抑制或激活技术 (CRISPRi/a) 可以为人类功能基因组学方面的此类努力提供帮助。我们着手表征 CRISPRi 在后分化 iPSC-CM 中的性能,以关键的心脏离子通道基因 KCNH2、KCNJ2 和 GJA1 为目标,并使用全光学工具提供对心脏复极、静息膜电位稳定性和传导特性影响的多参数量化。更有效的 CRISPRi 效应物(例如 Zim3)和优化的病毒递送可使性能得到改善,与使用 CRISPRi iPSC 系相当。当 CRISPRi 部署在非分裂分化心脏细胞中时,确认轻微但具体的表型变化是朝着更全面的临床前心脏毒性测试和未来体内治疗应用迈出的重要一步。关键词:CRISPRi、iPSC-CM、心脏电生理学、离子通道、KCNH2、KCNJ2、GJA1、全光电生理学、光遗传学、光学映射
生物分子冷凝物通过结合相分离和多价大分子的可逆关联的过程形成。冷凝物可以是通过共存致密相和稀阶段定义的两阶段或多相系统。在这里,我们表明溶液离子可以在由固有无序蛋白或均聚糖RNA分子形成的冷凝物定义的共存阶段不对称地分配。我们的发现是通过直接测量蛋白质和RNA冷凝物共存阶段的阳离子和阴离子活性的直接测量的。在共存阶段之间对离子分配的不对称性随蛋白质序列,冷凝物类型,盐浓度和离子类型而变化。通过溶液离子不对称分配而建立的Donnan平衡产生了称为Donnan和Nernst电位的相间电势。我们的测量结果表明,冷凝水的相位势与膜结合细胞器的膜电位相同。相间电势量化了共存相的微环境相互不同的程度。重要的是,基于凝结物特异性相间电势,这是无膜体的膜状电势,我们认为冷凝水是储存电荷的中尺度电容器。相间电势导致在冷凝水界面处产生双层。这有助于解释对电化学活性的冷凝水界面的最新观察结果。
讲师名称:Drew Maurer博士和KarinaAlviña博士。房间编号:L1-101 McKnight Brain Institute(MBI)电话号码:Maurer 352-273-5092; Alviña352-294-8266电子邮件地址:drewmaurer@ufl.edu; kalvina@ufl.edu Office Hours : Upon request Preferred Course Communications : Email Prerequisites: Must be a graduate student in Neuroscience or related discipline (e.g., Psychology, Pharmacology, Clinical Health Psychology, Biomedical Engineering, Pharmacodynamics) Purpose and Outcome: This semester course provides the fundamental principles of electrical properties and synaptic signaling in excitable cells.学生将了解神经系统的生理特性,包括离子和离子通道如何控制膜电位和兴奋性,以及在单个神经元水平上如何出现信号传导,以表现为支持行为的较大网络。遵循单个细胞的功能,将涵盖它们连接的方式,包括神经元之间的突触信号传导。我们将涵盖突触的分子组成,以及不同种类的突触,传播的量化理论和神经调节。课程材料还将涵盖不同类型的突触可塑性机制,从而使突触强度使用依赖。该课程包括对整合神经生理学中的模型系统和神经回路的综述,以及神经回路与行为和认知过程的关系。课程概述:本课程将重点关注从微观量表到大脑与身体和环境的相互作用的神经系统的生理。