摘要 我们研究了卷积神经网络 (CNN) 在加速双栅极 MOSFET 量子力学传输模拟(基于非平衡格林函数 (NEGF) 方法)中的应用。具体而言,给定电位分布作为输入数据,我们实现卷积自动编码器来训练和预测载流子密度和局部量子电容分布。结果表明,在 NEGF 自洽计算中使用单个训练好的 CNN 模型以及泊松方程可以为各种栅极长度产生准确的电位,并且所有这些都在比传统 NEGF 计算短得多的计算时间内完成。 关键词:纳米级 MOSFET、模拟、非平衡格林函数、卷积神经网络、卷积自动编码器 分类:电子器件、电路和模块
尽管成本高昂且耗时,但仍可在地面设施中评估功率 MOSFET (金属氧化物半导体场效应晶体管) 中重离子诱导的单粒子烧毁 (SEB) 风险。因此,很少有实验研究专门研究与描述离子诱导 SEB 现象相关的相关参数。在本文中,使用几种离子能量组合研究了低压功率 VDMOSFET (垂直双扩散 MOSFET) 中的重离子诱导 SEB。进行了自洽统计分析,以阐明电荷沉积与 SEB 触发之间的关系。将实验数据与文献中的功率 MOSFET 中 SEE (单粒子效应) 最坏情况预测模型进行了比较,首次支持其与 SEB 机制中最坏情况预测的相关性。
具体而言,结合 DFT 计算,环辛四烯的光电子和光分离光谱发现了平面异构体和船形异构体之间相互转化的证据。9 此外,在单分子和双分子环加成的合成研究中,已经观察到同一组反应物同时产生多种产物异构体。10,11 为了解释这两种情况下的产物异构体分布,引入了由动力学而不是热力学驱动的分叉过渡态。采用密度泛函理论和分子动力学计算相结合的方法,对上述反应性进行了更定量的解释。12 由实验得出的能量提供的完全活性空间自洽场 (CASSCF) 计算已将驻点定位在势能
我们采用完全自洽的横向分辨 Hartree-Fock 近似,以数值方式处理近宏观样本尺寸的量子霍尔区域中较高朗道能级的电子配置。在低无序性下,我们发现空间分辨的条纹和气泡状电荷密度调制,并展示了它们如何根据填充因子出现。这些边界区域的微观细节决定了将电荷密度调制对齐为条纹或气泡的几何边界条件。使用非平衡网络模型模拟传输,在接近半填充的条纹区域中,注入电流的方向具有明显的各向异性。我们获得的条纹周期为 2.9 个回旋半径。我们的结果提供了对其在强磁场中后果的直观理解,并表明在长度尺度上研究时,整数量子霍尔区域中的许多粒子物理学占主导地位。
位移铁电体中序参量的集体振幅模式称为铁素体,表示长程有序极化的振幅波动。在远低于相变温度 T c 的温度下,铁素体激发的能量在长波长极限内明显间隙。当接近 T c 时,该间隙急剧软化为最小值或无间隙值,从而对热性能产生重大贡献。在此背景下,我们通过结合位移铁电体的微观自洽相变理论来探索铁素体在热容量和热传输中的作用,而不是传统的将热性能仅归因于声学声子的方法。以铁电体 PbTiO 3 为例,我们表明,相变附近铁素体的软化对于准确捕捉热性能的实验温度和电场依赖性至关重要。
diatom-Diatom碰撞的量子古典(QC)方法是由G.D.计费[6],被证明是准确,有效的,可以获得涉及振动能传递的重型突击过程的横截面和速率系数。该方法的关键特征是,振动的自由度是机械处理的,而其他自由度(翻译和旋转运动)则经过经典处理。为了以自洽的方式处理整个系统,量子机械的自由度必须在周围经典动作的影响下正确地发展。反过来,经典的自由度必须对量子过渡做出正确的反应。在目前的两个双原子分子的量子古典方法中,振动和旋转振动耦合通过紧密耦合方程式对量子进行量子处理。首先,总振动波函数是根据旋转扰动的摩尔斯波波函数ϕ v 1(r 1,t)ϕ v 2(r 2,t)扩展的:
QCD在大密度下揭示了丰富的相结构,范围从潜在的临界终点和不均匀阶段或护城河制度到具有竞争顺序效应的超导级别。通过功能方法在QCD的阶段图中解决该区域需要大量的定量可靠性来进行定性访问。在目前的工作中,我们通过在低能有效的夸克 - 梅森理论中建立完全自洽的近似方案来系统地将功能性重归其化组方法扩展到低能QCD。在此近似值中,在有效的电位以及所有较高的夸克 - 易夸克 - 中音散射顺序方面都考虑了中间亲和σ模式的所有指向多肢体事件。作为第一个应用,我们计算QCD的相结构,包括其低温,大化学势部分。还讨论了近似和系统扩展的定量可靠性。
受超导量子处理器实验的启发 [X. Mi et al. , Science 378 , 785 (2022). ],我们研究了随机场 Floquet 量子 Ising 模型多体谱中的能级配对。在 Jordan-Wigner 费米子中写入自旋模型时,配对源自 Majorana 零模式和 π 模式。两种分裂都具有对数正态分布和随机横向场。相反,随机纵向场以截然不同的方式影响零和 π 分裂。虽然零配对迅速提升,但 π 配对非常稳健,甚至得到加强,直至无序强度大大增加。我们在自洽的 Floquet 微扰理论中解释我们的结果,并研究对边界自旋关联的意义。π 配对对纵向无序的稳健性可能对量子信息处理有用。
摘要 — 二维 (2D) 半导体晶体可用于进一步提高场效应晶体管的效率和速度。此类晶体管不受传统 MOS 晶体管在尺寸减小时产生的一些不利影响。本研究提出了以二维晶体为沟道的晶体管 MOS 结构模型,并研究了其电荷特性。在 MoSe 2 、WS 2 、WSe 2 、ZrSe 2 、HfSe 2 和 PtTe 2 等代表性二维晶体的电物理特性变化范围内对这些特性进行了数值模拟。发现了结构电物理参数通过化学势的自洽相关性,并证明了场电极电位和栅极绝缘体电容对它们的影响。对该晶体管结构的传输特性陡度与电压增益的计算表明,对于禁带宽度在0.25–2.1 eV范围内的过渡金属二硫属化合物(TMD)沟道,上述参数的幅度分别可达0.1 mA/V和1000。
这项工作扩展了自洽先导起始和传播模型 (SLIM),以评估飞镖和飞镖阶梯式先导对接地物体的雷电附着。SLIM 最初被提出用于评估阶梯式先导的雷电附着。与已充分研究的阶梯式先导雷电附着不同,响应飞镖和飞镖阶梯式先导而引发的向上连接先导是在环境电场明显更快的变化下形成的。此外,这些连接先导可以在同一闪电中先前的击打预先调节的暖空气中形成。扩展模型中还开发了一个分析表达式,用于评估每单位长度热化连接先导所需的电荷。通过分析火箭触发闪电实验中记录的三个附着事件,验证了该模型。发现向上先导的预测特性与测量值之间具有良好的一致性。该模型用于评估在上行闪电回击之前连接先导可以形成的不同条件。