除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。
有意识的代理人在未来替代方案中执行真正选择的能力是道德责任的先决条件。遍及古典物理学的决定论禁止自由意志破坏道德的基础,并排除了个人偏见的有意义的量化。为了解决这种僵局,我们利用量子物理学的特征不确定性,并得出对脑皮质网络将表现出的自由量的定量度量。中枢神经系统与周围环境之间的相互作用被证明是对神经成分进行量子测量的,该测量结果实现了从所得量子概率分布中选择的单个测量结果。替代物理结局的量子倾向中的固有偏见提供了不同数量的自由意志,可以通过学习神经系统选择的实际作用方案来量化预期信息的增益。例如,神经元电尖峰引起了确定性的突触囊泡在感觉或体育体途径突触中的释放,没有任何自由会表现出来。然而,在皮质突触中,囊泡释放是不确定的,概率为每个尖峰0.35。这使脑皮质具有超过100万亿的突触,每秒的自由度将超过96吨。尽管可靠的感觉或躯体运动信息的确定性传播可确保动物对身体环境的强大适应性,但由脑皮层做出的决策引发的行为反应的不可预测性对于避免捕食者而言是进化的优势。因此,自由意志可能具有生存价值,可以通过自然选择进行优化。
摘要:在本文中,我们使用Mediapipe使用MediaPipe使用Unity Game Engine介绍了用于在3D环境中的计算机视觉的实现。在我们以前的工作中,我们发现,无论最初的参数如何,模拟通常都会导致快速灭绝。在此模型中,我们实施了与Unity的3D世界集成的空气画布和计算机视觉系统。我们的目标是通过合并3D演化来实现系统稳定,长期操作和更现实的模拟。使用Unity Game Engine,我们根据人工或现实世界地图创建并管理了一个封闭的3D生态系统环境。对生态系统的模拟和生成的数据分析可以作为进一步研究的起点,尤其是在可持续性方面。我们的系统公开访问,允许用户自定义和上传其参数,地图和对象,并定义继承和行为模式,从而使他们能够根据生成的数据来测试其假设。本文的目标不是创建和验证模型,而是提供IT工具。对于进化研究人员,该系统允许创建和呈现模拟,包括动画会议演示文稿,以增强可视化和参与度。使用3D模拟对于教育目的特别有价值,吸引学生并增加对3D互动世界的兴趣。学生可以观察生态系统的行为,自然选择如何支持适应性以及竞争如何影响物种。关键字:空气画布,计算机视觉,统一,3D模拟,生态系统
越来越多的证据支持非生物应激反应在植物多倍体成功中的主要作用,这在恶劣的环境中逐渐蓬勃发展。然而,由于基因组加倍和自然选择之间的相互作用,了解多倍体的生态生理学具有挑战性。在这里,我们研究了两种相关的dianthus broteri细胞型的生理反应,基因表达和表型 - 与不同的基因组重复(4×和12倍)以及进化轨迹以及短暂的极端温度事件(42/28°C和9/5°C)。与4倍相比,12×cyto类型显示应力反应基因(Sweet1,Pp2C16,AI5L3和ATHB7)和增强气体交换的表达更高。在热应激下,两个拼写物的生理性能严重受损,基因表达改变,胞嘧啶甲基化降低。然而,12×细胞型表现出显着的生理耐受性(通过更大的光化学完整性保持气体交换和水状态,并可能增强水的储能),同时下调了PP2C16表达。相反,尽管优先保存水分,但4×D。Broteri易受热应力,显示出非稳固的光合限制和不可逆的光化学损害的迹象。这种细胞型还呈现了热量下调ATHB7的基因特异性表达模式。这些发现提供了有关多倍体产生的分歧应力反应策略和生理性的见解,突出了其对植物功能的广泛影响。
海洋蓝细菌是一类灭绝的光合细菌,可以追溯到350万年。最珍贵的海洋微生物是针对各种色素提取的。他们的有益的代谢产物的产生很丰富。颜料是用于赋予其他材料颜色的明亮物质。真正的色素构成了这些着色剂的大多数,它们也称为生物色素或生物色素。这些生物色素通常被用作固体和液体的混合物,因为它们不溶于水。颜料是由生物产生的,特定的光吸收方法赋予了它们的颜色。自然选择已在数百万年内完善其代谢产物,以对一系列生物靶标产生影响。食物,饲料,化妆品,药物,营养和水产养殖领域都广泛使用了海洋色素。这项研究的目的是评估许多海洋蓝细菌物种微囊藻,lyngbya limnetica,oscillatoria roai,uscillatoria acuminata和uscillatoria princes,它们引起了一些兴趣。这些物种是为了研究其生物色素的研究,例如叶绿素颜料,植物素,β-胡萝卜素和植酸酯。已经对所有生物色素估计进行了初步研究,包括β-胡萝卜素,类胡萝卜素结合,植物蛋白酶,植酸盐和叶绿素颜料的估计。在5.9%的情况下,振荡王子的叶绿素含量最大。微囊藻的类胡萝卜素量为1.7%和1.8%。振荡器和振荡王子的植物素含量分别更高,0.78%和0.85%。和lyngbya limnetica。微囊藻sp。表现出高达1.5%的β-胡萝卜素水平。
我们将共同探索一种强大的,简约的,可普遍的人类进化论理论,显然成功地结合了自然和社会科学。这种理论观点已被称为“社会胁迫理论”。与以前的所有理论不同,社会胁迫理论为我们提供了一个完整的,可检验的图片,说明了人类如何以及为什么通过自然选择的过程才发展成为一种彻底的新动物。这种理论命令反过来又为人类生活的许多不同方面提供了意想不到的新见解。除其他外,我们将了解为什么除了其他动物的能力之外,我们还具有如此扩展和复杂的沟通(包括言语);为什么人类能够将地球转变为我们已成为的主要物种?以及为什么我们以如此强大的道德意义来实现生活。这种方法还为我们提供了人类社会行为及其逻辑的理论。对我们行为的理解使我们深入了解了我们历史的细节,更重要的是我们目前的状况,包括我们目前面临的科学,经济,社会和政治问题。您准备加入下一代社区问题解决者。对自然选择对人类过去和现在的影响有了新的理解,这对人类未来的新颖力量赋予了新的力量。在概述中,本课程为成为人类的含义以及我们如何对我们共同的全球命运的命令提供了独特的见解。推荐课程预/共同条件:U3或U4(大三或高级)地位,以及以下一个:ANP 101,BIO 115,BIO 201,BIO 201,BIO 202或BIO 203
进化是指物种适应环境并随着时间的推移发展新特征的过程。同样,技术多年来也经历了重大变化,新的创新不断涌现,使旧技术过时。例如,在 USB 驱动器和云存储出现之前,软盘曾经是一种流行的存储和传输计算机数据的方式。在互联网出现之前,百科全书是获取一般知识和信息的流行方式。这些例子说明了随着新创新的出现,自然选择如何使旧技术过时。自 17 世纪第一批学术期刊创立以来,科学期刊也经历了重大演变。最初,科学期刊以印刷形式出版。然而,随着万维网的兴起,《药学与制药科学杂志》可以免费向公众提供文章,从而消除了 1998 年通过“开放获取”途径获取科学研究的障碍。药学是专注于药物发现、开发和制造的科学领域。多年来,这一领域取得了重大进展。我们对疾病分子和遗传基础的理解不断加深,这极大地促进了这一增长。组合化学和计算机建模等技术极大地提高了药物开发的效率。高通量筛选使科学家能够快速识别具有所需特性的化合物,而药物基因组学则促进了个性化医疗的扩展。另一个例子是网络药理学的广泛应用,它拥有庞大的数据库,可以以循证方式研究常用的传统药物。人工智能 (AI) 的使用将进一步促进药物研发。例如,语言模型(如 2022 年 11 月推出公测版的 Chat Generative Pre-Trained Transformer (GPT))已在包括制药
T ERJE T RAAVIK 1, 2 AND T HOMAS B ØHN 1 1 T HE N ORWEGIAN I NSTITUTE OF G ENE E COLOGY (G EN Ø K ), T ROMSØ , N ORWAY 2 D EPARTMENT OF M ICROBIOLOGY AND V IROLOGY , U NIVERSITY OF T ROMSØ , N ORWAY Life on Earth was initiated some 10 billion years after the Universe was created.生命是根据物理定律的基础,必须遵守物理定律的创造。同时,物理定律无用,可以理解生命过程,因为将原子与分子和分子组合到细胞和生物中是基于新兴特性,仅通过组件,细胞,生物体,生物,生态系统以及小蓝色蓝色星球的整个生物圈之间的相互作用而产生。我们强大的现代生物技术无疑确实有改变地球上生活的潜力。当时出现的基本问题是:我们真的知道我们在改变什么以及所涉及的风险吗?本章旨在简要概述生活的进化和成分。因此,它提出了与本书更专业的部分中更全面处理的问题有关的基本概念。本章根据以下概述组织:1。生命的起源1.1。Tellus,我们的共同太空飞船1.2。化学先决条件1.3。早期的生化和构建块2。细胞2.1。蛋白质2.1.1。酶2.2。通道和泵2.3。级联和受体2.4。基因和基因组2.5。内部时钟:单元格周期3。多细胞生物3.1。基因型和表型3.2。基因组进化3.3。自然选择4。种系与SOMA 4.1。永恒还是致命?5。物种和生物多样性6。结论备注7。资源和参考
纸和笔仍然是系统工程师用来捕捉系统模型的最常用工具。它们提高了生产力并促进了协作和创造力,因为用户不需要遵守计算机辅助系统工程 (CASE) 工具中通常用于系统建模的正式符号。然而,将白板上绘制的模型数字化到 CASE 工具中仍然是一项困难且容易出错的活动,需要工具专家的知识。在过去十年中,从符号推理转向机器学习已成为许多领域提高软件应用程序性能的自然选择。自然素描和在线识别领域也不例外,大多数现有的素描识别器都依赖于预先训练的符号集来增加对识别器结果的信心。然而,这种性能的提高是以信任为代价的。缺乏信任直接源于神经网络结果缺乏可解释性,这阻碍了系统工程团队对其的接受。解决方案不仅应兼具性能和稳健性,还应赢得人类用户的毫无保留的支持和信任。虽然文献中的大多数作品都倾向于性能,但需要更好地将人类感知研究纳入方程式以恢复平衡。本研究提出了一种用于自然素描的方法和人机界面,使工程师能够使用交互式白板捕获系统模型。该方法结合了符号人工智能和机器学习的技术,以提高性能,同时不影响可解释性。该方法的关键概念是使用经过训练的神经网络在全局识别过程的上游将手写文本与几何符号分离,并使用合适的技术(OCR 或自动规划)分别识别文本和符号。该方法的主要优点是它不依赖任何其他交互方式(例如虚拟键盘)来注释具有文本属性的模型元素,并且保留了建模助手结果的可解释性。用户实验验证了界面的可用性。
设施布局设计在制造和服务设施的效率和生产力中起着至关重要的作用。设施中机器,设备和工作区的布置显着影响工作流程,物质流和整体操作效率。设施布局设计的传统方法通常依赖于手动或启发式方法,这些方法可能会耗时,并且可能不会产生最佳的解决方案。遗传算法(气)为优化设施布局设计提供了有希望的替代方法。受自然选择过程的启发,气体模拟于迭代改善解决方案。它们通过产生一系列潜在的解决方案,评估其健身性,并通过选择,跨界和突变操作来迭代发展,从而产生更好的后代解决方案。扩展现实(AR)是一项创新,它覆盖了当前现实的插图。在AR创新授权小工具或应用程序Catch的文章图片时,将其提供给PC Vision程序,然后处理该图片以从其预测信息基础上积累了每个吸引人和相关的微妙之处。它具有在现实世界和电子数据之间直接连接的承诺。在许多情况下,AR作为计算机生成的现实(VR)混合在一起。两者之间的关键对比是,尽管AR通过实际数据覆盖层巩固了当前的现实,但增强现实取代了整个真正的世界。此外,在VR的情况下,客户不必可用于遇到虚构的宇宙,尽管如果应该出现扩展现实的情况,则可以预期客户的存在。在设施布局设计的背景下,考虑各种约束和目标,遗传算法可用于探索和完善布局配置。通过将布局设计表示为染色体并使用健身功能来评估其有效性,本文旨在全面概述遗传算法在设施布局设计中的应用。