K β x 射线发射光谱是分析 3 d 过渡金属系统电子结构及其超快动力学的有力探针。选择性增强特定光谱区域将提高这种灵敏度并提供全新的见解。最近,我们报道了使用 x 射线自由电子激光观察和分析了 Mn 溶液中 K α 放大的自发 x 射线发射以产生 1 s 芯空穴粒子数反转 [Kroll 等人,Phys. Rev. Lett. 120,133203 (2018) ]。要将这种新方法应用于化学上更敏感但更弱的 K β x 射线发射线,需要一种机制来胜过 K α 发射的主导放大。本文报告了使用两种颜色的 x 射线自由电子激光脉冲对 NaMnO 4 溶液中种子放大 K β x 射线发射的观察结果,一种用于产生 1 s 核心空穴粒子数反转,另一种用于种子放大 K β 发射。将观察到的种子放大 K β 发射信号与相同立体角中的传统 K β 发射信号进行比较,我们获得了超过 10 5 的信号增强。我们的发现是增强和控制 K β 光谱选定最终状态的发射的第一步,可应用于化学和材料科学。
直线加速器相干光源 X 射线自由电子激光器是一种复杂的科学仪器,每天会多次更改配置,因此需要快速调整策略来减少连续实验的设置时间。为此,我们采用贝叶斯方法通过控制四极磁铁组来最大化 X 射线激光脉冲能量。高斯过程模型为机器响应提供了相对于控制参数的概率预测,从而在寻找全局最优时实现了探索和利用的平衡。我们表明,可以从存档的扫描中学习模型参数,并且可以从光束传输中提取设备之间的相关性。结果是一个样本高效的优化程序,结合了历史数据和加速器物理知识,大大优于现有的优化器。