在古典世界中遇到的自由度之间的量子纠缠是由于周围环境而挑战。为了阐明此问题,我们研究了在两分量量子系统中产生的纠缠,该量子系统包含两个巨大的颗粒:一个自由移动的光电电子,该光学的光电膨胀到中镜长度尺度和浅色的原子离子,代表光和物质的混合状态。尽管经典地测量了光电子光谱,但纠缠使我们能够揭示有关离子穿着状态的动力学的信息,以及由种子自由电子激光器传递的飞秒极端紫外线脉冲。使用时间依赖的von Neumann熵来解释观察到的纠缠产生。我们的结果揭示了使用自由电子激光器的短波长相干脉冲来生成纠缠光电子和离子系统来研究距离的怪异作用。
©2024作者。本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许使用,共享,适应,分发和繁殖任何任何媒介或格式,只要您适当地归功于原始作者和来源,就提供了与Creative Commons许可证的链接,并指示了Ifchanges。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。文章的创意共享许可中未包含材料,并且您的预期用途不允许法定法规或超过允许的用途,您将需要直接从版权所有者那里获得persermission。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
©2023作者,在Springer Nature Limited的独家许可下。保留所有权利。该文章的此版本已被接受,在同行评审后被接受,并受到Springer Nature AM使用条款的约束,但不是记录的版本,也不反映后接受后的改进或任何更正。记录版本可在线获得:http://dx.doi.org/10.1038/s41566-022-01132-6。
图 2:单个电子上的双量子比特门示例,强调了量子比特空间与独立量子比特子空间的分离。所提出的门对量子比特的不同量子比特子空间执行独立操作。(a)在同一自由电子上的两个独立子空间上实现两个 1 量子比特量子门。电子经历 PINEM 相互作用,该相互作用转换为量子比特空间中围绕 𝑧̂ 轴的两个 𝜋/2 1 量子比特旋转矩阵的张量积。然后,应用门 𝑅 𝑥,1 (𝜋/4)
极化储存环和 FEL 通常具有水平极化矢量,这通常需要在垂直平面上散射。LCLS-II 硬 X 射线波荡器具有垂直极化矢量。圆极化对于磁测量来说是可能的,并且很重要。
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
1. 加利福尼亚大学化学系,加利福尼亚州伯克利 94720,美国 2. 劳伦斯伯克利国家实验室化学科学部,加利福尼亚州伯克利 94720,美国 3. 马克斯普朗克学会弗里茨哈伯研究所,柏林 14195,德国 4. 加利福尼亚大学圣地亚哥分校纳米工程和化学工程系 ATLAS 材料科学实验室,加利福尼亚州拉霍亚 92023,美国 5. 内华达大学内华达极端条件实验室,内华达州拉斯维加斯 89154,美国 6. 弗里德里希席勒大学光学与量子电子研究所,阿贝光子学中心,耶拿 07743,德国 7. 耶拿亥姆霍兹研究所,耶拿 07743,德国 8. Elettra-Sincrotrone Trieste SCpA,Strada Statale 14,的里雅斯特 34149,意大利9. 劳伦斯伯克利国家实验室人工光合作用联合中心,美国加利福尼亚州伯克利 94720 10. 德克萨斯大学里奥格兰德河谷分校化学系,美国德克萨斯州爱丁堡 78539 11. 加州大学圣地亚哥分校材料科学与工程系,美国加利福尼亚州拉霍亚 92023 12. 加州大学圣地亚哥分校可持续电力与能源中心,美国加利福尼亚州拉霍亚 92023 13. 劳伦斯伯克利国家实验室材料科学部,美国加利福尼亚州伯克利 94720
摘要近年来,极端紫外线和软X射线自由电子激光(FEL)发育的一种重要趋势是外部激光器使用播种,旨在提高产生的脉冲的相干性和稳定性。高增益谐波生成播种技术是在费米首次实施的,并提供了较高的相干性以及强度和波长稳定性,可与台式超快激光相当。在费米(Fermi),种子激光器具有另一个非常重要的功能:它是泵 - 探针实验中使用的外部激光脉冲的来源,允许一个人实现记录的时正时正时抖动。本文介绍了单一和双重效率方案中费米种子激光的设计,性能和操作模式。此外,还提供了计划的升级,以应对升级到具有回声的谐波生成模式的挑战。
自由电子为原子分辨率下探测材料特性提供了强大的工具。超快电子显微镜的最新进展可以使用激光脉冲来操纵自由电子波函数。如果可以将电子显微镜的空间分辨率与激光脉冲探测量子系统中的相干现象的能力相结合,那将非常重要。为此,我们提出了一个新颖的概念,该概念利用了由激光脉冲塑造的自由电子,以测量材料中的量子相干性。我们发展了材料中形状电子和任意量子位态之间相互作用的量子理论,并展示了互动后电子能谱如何使测量量子状态(在bloch球上)以及脱位或松弛时间ðt2 = t = t1Þ。最后,我们描述了这样的电子如何从多个量子位检测和量化超高。我们的方案可以在超快传输电子显微镜(UTEM)中实现,开为原子分辨率下量子系统状态的全面表征开辟了道路。
辐射脉冲宽度(电子束)是单个光谱尖峰宽度的傅立叶缀合物。在时间域中的总体电子束(D T)越长,能量(频率)域中的光谱尖峰宽度(DE)越窄。