每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
引言——过去几十年来量子光学[1 – 4]的进展使得量子力学的基础测试[5,6]、量子光子态的测量[7 – 9]和量子技术的实现[10 – 14]成为可能。这些成就源于光子探测方案的发展,例如汉伯里·布朗-特威斯实验[15]、符合测量[6]、光子数分辨探测器[16,17]和用于量子态层析成像[18 – 20]的同差探测[7 – 9]。传统的量子光探测器依赖于光子与固态系统(如雪崩光电二极管[21 – 23]、超导纳米线[24,25]和光电倍增管[26,27])的相互作用。其他灵敏的量子光学探测器依赖于与有效两能级系统(例如原子、囚禁离子或超导量子比特)的光子相互作用 [28 – 32]。更先进的检测方案促进了光学非线性以增加检测带宽 [33,34]。然而,当前的量子光学技术在空间分辨率方面受到限制,并且由于电子元件的响应时间而限制了检测速率和带宽。在这里,我们提出了一种使用自由电子-光子纠缠 [35 – 37] 进行量子光子态层析成像的量子光学检测方案。我们展示了同质型自由电子与光子态的相互作用(图 1)如何通过电子能谱测量在相空间中提取有关该状态的最大信息。这种方法,我们称之为自由电子量子光学检测(FEQOD),具有由电子-光子耦合强度设定的基本信息限制,允许
Spring-8-II是Spring-8的主要升级项目,该项目于1997年10月成立为第三代同步辐射光源。这个升级项目旨在同时实现三个目标:实现出色的光源性能,对老年系统的翻新以及整个设施的功耗显着降低。将通过(1)用五弯曲的Achromat One替换现有的双弯曲晶格结构来实现将实现,((2)将储存的束能量从8降低到6 GEV,(3)通过安装水平辐射压力板的高度辐射式damp prighting semptres wig wig wig wig wig wig wig wig wig wig prighting wig prighting wig的水平阻尼分区的数量增加。 使用短期内置内部驱动器允许提供超级X射线射线,同时即使在减少6 GEV的电子灯光能量下,也可以保持高能光谱范围。 为了减少功耗,专用的注射器系统已关闭,并以时间共享的方式将紧凑型X射线自由电子激光器(XFEL)设施Sacla(紧凑型X射线自由电子激光器(XFEL)设施)的高性能线性加速器(XFEL)设施使用。 这允许在SACLA同时运行XFEL实验,并将电子束的全/充气注入到环中。 本文概述了Spring-8-II项目的概念,光源的系统设计以及加速器组件设计的详细信息。将实现,((2)将储存的束能量从8降低到6 GEV,(3)通过安装水平辐射压力板的高度辐射式damp prighting semptres wig wig wig wig wig wig wig wig wig wig prighting wig prighting wig的水平阻尼分区的数量增加。 使用短期内置内部驱动器允许提供超级X射线射线,同时即使在减少6 GEV的电子灯光能量下,也可以保持高能光谱范围。 为了减少功耗,专用的注射器系统已关闭,并以时间共享的方式将紧凑型X射线自由电子激光器(XFEL)设施Sacla(紧凑型X射线自由电子激光器(XFEL)设施)的高性能线性加速器(XFEL)设施使用。 这允许在SACLA同时运行XFEL实验,并将电子束的全/充气注入到环中。 本文概述了Spring-8-II项目的概念,光源的系统设计以及加速器组件设计的详细信息。,((2)将储存的束能量从8降低到6 GEV,(3)通过安装水平辐射压力板的高度辐射式damp prighting semptres wig wig wig wig wig wig wig wig wig wig prighting wig prighting wig的水平阻尼分区的数量增加。使用短期内置内部驱动器允许提供超级X射线射线,同时即使在减少6 GEV的电子灯光能量下,也可以保持高能光谱范围。为了减少功耗,专用的注射器系统已关闭,并以时间共享的方式将紧凑型X射线自由电子激光器(XFEL)设施Sacla(紧凑型X射线自由电子激光器(XFEL)设施)的高性能线性加速器(XFEL)设施使用。这允许在SACLA同时运行XFEL实验,并将电子束的全/充气注入到环中。本文概述了Spring-8-II项目的概念,光源的系统设计以及加速器组件设计的详细信息。
K β x 射线发射光谱是分析 3 d 过渡金属系统电子结构及其超快动力学的有力探针。选择性增强特定光谱区域将提高这种灵敏度并提供全新的见解。最近,我们报道了使用 x 射线自由电子激光观察和分析了 Mn 溶液中 K α 放大的自发 x 射线发射以产生 1 s 芯空穴粒子数反转 [Kroll 等人,Phys. Rev. Lett. 120,133203 (2018) ]。要将这种新方法应用于化学上更敏感但更弱的 K β x 射线发射线,需要一种机制来胜过 K α 发射的主导放大。本文报告了使用两种颜色的 x 射线自由电子激光脉冲对 NaMnO 4 溶液中种子放大 K β x 射线发射的观察结果,一种用于产生 1 s 核心空穴粒子数反转,另一种用于种子放大 K β 发射。将观察到的种子放大 K β 发射信号与相同立体角中的传统 K β 发射信号进行比较,我们获得了超过 10 5 的信号增强。我们的发现是增强和控制 K β 光谱选定最终状态的发射的第一步,可应用于化学和材料科学。
热力学与相变:热力学中的热和功的概念、热力学系统、热力学第零定律。温度概念、第一定律的微分形式、第二定律的陈述、熵的概念、焓。晶体的热力学函数和关系。相变和多相平衡。[10] 电子能带理论:能带理论、固体的经典自由电子理论、固体的索末菲量子自由电子理论、周期势的布洛赫波函数、克罗尼希-佩尼模型和能带。费米能量和费米面、电子的有效质量、布里渊区和倒易晶格。[10] 固体的电子特性:磁场下的传输方程、回旋共振、磁场下的能级和态密度。朗道抗磁性、自旋顺磁性、德哈斯范阿尔芬效应。磁阻、经典和量子霍尔效应。 [10] 教科书和/或参考资料
• Huang 等人撰写的“X 射线自由电子激光器的特点和未来”。CC BY-NC-ND 4.0。• 由美国国家功能糖组学中心的 Richard Cummings 博士提供。• 由劳伦斯利弗莫尔国家实验室的 Graham Bench 博士提供。
目前正在开发中,三种不同类型的高能量激光器(HEL)正在开发中:化学激光器,固态激光器和自由电子激光器(FEL),每个激光器(FEL)使用不同的原理来产生激光束。最发达的概念,也是唯一要缩放到HEL功率水平的概念是化学激光器,其中能量释放来自化学反应。这是空降激光器(ABL)和美国陆军/以色列战术高能激光(THEL)中使用的激光类型。也是其他HEL演示器系统中采用的技术,例如新墨西哥州White Sands的Space-Space-Space-las-Im-Im-Im-Im-Im-In-Fraded高级化学激光(Miracl)高能量激光器。sec-ond类型的激光器,电动固态激光器,可以在传播,致死性和工程设计(较不复杂,尺寸较小,对冲击敏感的敏感性较低)方面提供好处。第三个系统,自由电子激光器,也是电力,是最复杂的,但是唯一完全可供选择的激光概念。对于选定的应用,例如通过海平面的大气传播,此属性至关重要。尽管没有定义高能激光器的设定功率水平阈值,但通常认为千瓦时至兆瓦的平均力量可以从武器意义上定义高功率。HEL有可能解决从地面到太空的一系列应用和任务。基于地面的激光主要用于战术防空,这是Thel的作用,也是反卫星(ASAT)能力的作用。最近,激光