从5G时代开始,通信终端将不再仅限于手机,而是扩展到包括无人机,机器人,连接的汽车等。对于此类自由空间中的这种灵活移动的设备,肯定需要精确的“本地化”技术。对于本地化,GNSS定位方法被广泛使用。但是,GNSS定位的精度取决于通信环境。即使设备的性能足够,较差的通信环境也会将测量精度降低到3m-30m。有必要开发一个可以更准确,有效,稳健地同步时间的平台。
摘要 自由空间光通信正在成为一项成熟的技术,近几年已在太空中进行了多次演示。日本国家信息通信技术研究所 (NICT) 在过去三十年中进行了多项最重要的在轨演示。然而,这项技术尚未得到广泛的商业应用。为此,NICT 目前正致力于开发一种小型激光通信终端,该终端可安装在超小型卫星上,同时还兼容各种其他不同平台,满足广泛的带宽要求。该设计采用的策略是创建一个多功能激光通信终端,无需大量定制即可在多种场景和平台上运行。本文介绍了 NICT 目前为开发该终端所做的努力,并展示了已经为初步测试开发的原型,并对其进行了描述。这些测试将首先包括使用无人机进行性能验证,目的是将原型安装在高空平台系统 (HAPS) 上,以建立 HAPS 与地面之间的通信链路,然后与地球静止轨道 (GEO) 进行通信,从而覆盖广泛的操作条件。对于这些测试,在前一种情况下,无人机的终端是一个简单的发射器,而 HAPS 的终端是可移动的地面站;在后一种情况下,终端是 GEO 卫星 ETS-IX,预计 NICT 将于 2023 年发射。关键词:自由空间光通信、无线通信、空间激光通信、小型化终端
摘要 使用 3D 打印的聚合物增材制造技术用于高频率毫米波(约100 至 300 GHz)应用正在兴起。在我们之前的工作(金属管矩形波导和自由空间准光学元件)的基础上,本文通过演示紧凑的多通道前端子系统,将两种介质在 G 波段(140 至 220 GHz)结合在一起。在这里,概念验证演示器集成了八种不同类型的 3D 打印组件(总共 30 个独立组件)。此外,两个测试平台和子系统的外壳都是 3D 打印的单件,以支持即插即用开发;提供轻松的组件组装和对齐。我们利用准光学测试平台引入了定制的自由空间 TRM 校准和测量方案。均等功率分配在我们的多通道应用中起着至关重要的作用。在这里,我们介绍了一种用于上毫米波应用的宽带 3-D 打印准光学分束器。我们对各个组件和完整集成子系统的定量和/或定性性能评估证明了在如此高的频率下使用消费级桌面 3-D 打印技术的潜力。这项工作为低成本、快速原型设计和完整毫米波前端子系统的小批量生产开辟了新的机会。
量子密码学 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的突出候选技术 [2]。尤其是量子密钥分发 (QKD),其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是由于光纤链路的透射率呈指数衰减。通常,有两种解决方案可以克服这一限制:使用量子中继器 [4-10] 或使用自由空间和卫星链路 [11-17]。目前,基于陆地光纤的量子通信系统的覆盖范围仅限于几百公里 [18],而我们似乎即将建立全球量子通信网络,即量子互联网 [19, 20]。因此,最近的研究对星载 QKD 和空间量子通信产生了浓厚兴趣 [17],旨在了解自由空间高空平台站 (HAPS) 系统和卫星链路如何帮助解决当前的距离限制,同时保证量子安全。人们已经采取了重要措施,特别是在单向空间量子通信的限制和安全性方面 [21-25],其中
以 10KVA 电源模块为步长,输出功率高达 160KVA,适用于低功率振动台系统的 KVA 电源模块采用最新 MOSFET 技术,高效率,高保护标准,配备全系列系统联锁电路,确保高可靠性,符合国际安全和 EMC 标准,开关频率允许高信号带宽,谐波失真独立设计,包括场/消磁场电源和 EMI 滤波器,为振动控制器或客户仪器提供自由空间。使用触摸屏用户界面进行控制,可控制冲击和随机测试的峰值性能
背景 未来人类和机器人的深空探险将需要快速、高效的方式,在漫长的旅程中将高清图像、实时视频和大量数据从太空传送到地球。光通信系统已经在自由空间中提供高速率数据传输,可能为深空通信提供解决方案。林肯实验室和喷气推进实验室一直与 NASA 合作开展深空光通信计划,以开发和演示实现可靠、快速数据速率光通信的解决方案,往返于太阳系的遥远角落。光子计数相机就是其中一种解决方案。
1。理解波浪和电磁波的现象。2。了解量子力学的原理。3。将量子机械思想应用于亚原子域。4。感谢激光及其类型的基本原理。5。使用光电设备设计典型的光纤通信系统。模块:1波概论7小时的波 - 在弦上 - 弦上的波动方程(派生) - 谐波波 - 在边界处波的反射和波传输 - 站立波及其特征征的波 - 带分散的波 - 波的叠加 - 波和傅立叶方法(定性) - 波数据 - 波数据 - 波数据 - 相位velocity and opep velocity and ofers velocity and ofers velocity and ofers velocity and ofers velocity and ofers velocity and velocity。模块:2电磁波7小时的差异 - 梯度和卷曲 - 表面和体积积分 - 麦克斯韦方程(定性) - 电流密度的连续性方程 - 自由空间中的电流电流 - 电磁波方程 - 自由空间中的平面电波 - 自由空间 - Hertz的实验。Module:3 Elements of quantum mechanics 7 hours Need for Quantum Mechanics: Idea of Quantization (Planck and Einstein) - Compton effect (Qualitative) – de Broglie hypothesis - justification of Bohr postulate - Davisson-Germer experiment - Wave function and probability interpretation - Heisenberg uncertainty principle - Gedanken experiment (Heisenberg's microscope) - Schrödinger wave等式(时间依赖和时间独立)。纤维在医学中的应用 - 内窥镜检查。模块:4量子力学的应用6小时的特征值和限制在一维盒中的粒子的特征功能 - 纳米物理学的基础 - 量子约束和纳米结构 - 隧道效应(定性)和扫描隧道显微镜。模块:5个激光器6小时激光特性 - 空间和时间相干性 - 爱因斯坦系数及其意义 - 人口反演 - 两个,三个和四个级别的系统 - 泵送方案 - 阈值增益系数 - 激光的组件 - 激光器-He -Ne,ND:YAG和COR 2 LASERS和2 LASERS和他们的发动机应用。模块:6光纤中EM波的传播5小时5小时的光纤通信系统简介 - 通过光纤传播 - 接受角度 - 数值孔径 - V -参数 - 纤维类型 - 衰减 - 分散性 - 实现 - 内模态和插入室。Module:7 Optoelectronic devices 5 hours Introduction to semiconductors - direct and indirect bandgap – p-n junction, Sources: LED and laser diode, Photodetectors: PN and PIN Module:8 Contemporary Topics 2 hours Guest lectures from Industry and, Research and Development Organisations Total Lecture hours: 45 hours
即将开设的课程将直接应用于工业和研究领域。例如:用于所谓新空间应用的半导体芯片特性分析 / 未来自由空间光通信链路严重依赖光电子和光子技术 / 开发用于航天、航空和核拆除或汽车应用的传感器 / 开发用于医学和高能物理研究的加速器的新一代辐射剂量计和光束监测工具 / 开发用于核拆除的可靠机器人、用于自动驾驶汽车的可靠电子和光子设备。FdS 通信服务 - fds.communication@umontpellier.fr - 2020 年 9 月版
思维是人类大脑活动之一,被称为脑电波,其本质是大脑神经元发出的电脉冲。思维的特性与量子纠缠的特性高度相似且密切相关,如叠加性、非局域关联性、瞬时连接性、一元性等。脑内振荡电脉冲经过放大、调制、量子纠缠等一系列转换,被转换成携带大脑活动信号的量子纠缠电磁波,即携带思维活动信号的载波。载波可以在自由空间中传输,无论距离多远,都可以在其他地方通过解调来检测、记录和检索原始的大脑活动数据,因此生前思维可以永久保存。