摘要:ALD薄片的持续发展需要持续的改进,并改变适合不同实际应用的量身定制特性的材料。臭氧最近被确定为前体,比晚期介电薄膜ALDS中的替代氧化前体具有不同的优势。本研究报告了使用O 3源的氧化铝(Al 2 O 3)和Hafnia(HFO 2)形成,并比较获得的结构和电性能。与水基薄膜相比,对臭氧基材料进行的结构检查证明具有较低的空缺水平。增强的结构特性还导致有问题通过整体层掺入不同的掺杂剂。此外,对使用ALD Gate介电的MIS结构的电特性分析表明,基于臭氧的胶片的质量和良好的绝缘性能得到了改善。然而,需要用臭氧进一步优化ALD技术,因为相对较低的相对介电性表征了超细膜。
摘要:ALD薄片的持续发展需要持续的改进,并改变适合不同实际应用的量身定制特性的材料。臭氧最近被确定为前体,比晚期介电薄膜ALDS中的替代氧化前体具有不同的优势。本研究报告了使用O 3源的氧化铝(Al 2 O 3)和Hafnia(HFO 2)形成,并比较获得的结构和电性能。与水基薄膜相比,对臭氧基材料进行的结构检查证明具有较低的空缺水平。增强的结构特性还导致有问题通过整体层掺入不同的掺杂剂。此外,对使用ALD Gate介电的MIS结构的电特性分析表明,基于臭氧的胶片的质量和良好的绝缘性能得到了改善。然而,需要用臭氧进一步优化ALD技术,因为相对较低的相对介电性表征了超细膜。
EPA 的“睦邻”提案将改善全国各城市和县的空气质量,保护人们免受可预防的过早死亡、哮喘发作和呼吸道疾病的困扰。EPA 预计,到 2026 年,拟议规则将防止约 1,000 例过早死亡、2,400 次住院和急诊就诊、130 万例哮喘症状和 470,000 天的缺课。这些公共卫生益处源于拟议的减少氮氧化物 (NO X ) 排放量,NO X 是臭氧“烟雾”形成的关键污染物,在臭氧季节,26 个州的电力部门排放量减少 29%,重工业排放量减少 15%。睦邻提案针对的是臭氧和形成臭氧的 NO X 排放,这些排放通常通过风跨越州界,而且距离很远。受上风州污染影响的下风区(城市、郊区和农村)将受益于该提案。该提案履行了 EPA 的《清洁空气法》义务,即在各州未能满足该法案的要求,制定和执行计划以减少威胁其下风向邻居空气质量的污染时,EPA 应采取行动。 ___________________________________________________________________________ 行动摘要 2022 年 2 月 28 日,美国环境保护署 (EPA) 提议大幅减少形成臭氧的 NO X 排放。这一行动将确保提案中涵盖的 26 个州通过减少污染来满足《清洁空气法》的“睦邻”要求,这些污染是下风向各州实现和维持 2015 年臭氧国家环境空气质量标准 (NAAQS) 的问题的重要原因。本提案中的污染减少措施不仅可以挽救生命并改善美国各地受雾霾影响社区的公共健康,而且对企业、工人和消费者来说也是具有成本效益且负担得起的。为了帮助实现 2015 年臭氧 NAAQS 的健康和环境效益,EPA 提议采取多种方法。
空气质量是圣安东尼奥市的一个重要考虑因素,因为空气质量会影响公众健康。全市减少地面臭氧的努力是重中之重。2022 年 4 月 13 日,美国环境保护署 (EPA) 将贝尔县的地面臭氧指定为“中度”未达标。要恢复达标状态,贝尔县必须在 2024 年 9 月 24 日之前将 8 小时地面臭氧降低到 70 ppb。在预测的天气条件有利于形成臭氧的日子里,这一天被视为臭氧行动日。臭氧行动日发生在三月至十一月之间,此时阳光往往最强烈。CPS Energy 制定了企业臭氧行动日计划,其中包括尽可能避免某些活动,例如发动机空转和给车辆加油,这些活动可能会导致臭氧形成。此外,CPS Energy 还是圣安东尼奥大都会卫生局成立的臭氧技术委员会的成员。
•前MLS周期的偏差不同•平流层臭氧偏见在2004年8月以后非常稳定•对流层臭氧受仪器变化的影响大于总柱或平流层臭氧•在2018年之后增加北极的臭氧偏见(Driffing Noaa-19)•2005 - 2018年对流层臭氧的稳定性能
抗臭氧剂是能够阻碍或减缓臭氧诱导降解的物质。臭氧自然存在于空气中,浓度极低,具有高反应性,尤其对不饱和聚合物反应剧烈,会导致臭氧裂解。臭氧分解需要一类独特的抗氧化稳定剂,通常以对苯二胺为基础。这些抗臭氧剂与臭氧的反应速度比臭氧与聚合物中易受损伤的官能团(通常是烯烃基团)的反应速度更快。它们之所以能做到这一点,是因为它们具有较低的电离能,能够通过电子转移与臭氧结合。这种转变会产生自由基阳离子,并通过芳香性进行稳定。这些物质保持活性并继续反应,生成1,4-苯醌、苯二胺二聚体和氨氧基自由基等产物[66- 67]。
支持结构 WMO 会员 WMO 秘书处 气溶胶科学咨询组(SAG) 温室气体 臭氧 降水化学 紫外线辐射 GAW 城市研究气象学和环境项目(GURME) 质量保证科学活动中心(QA/SAC) 德国 QA/SAC 瑞士 QA/SAC 美国 QA/SAC 日本 GAW 世界校准中心 为二氧化碳、总臭氧柱、表面臭氧、垂直臭氧、太阳辐射、降水化学、一氧化碳、气溶胶、光学厚度、放射性建立的中心 WMO 世界数据中心(WDC) 意大利伊斯普拉的气溶胶(WDCA)(EU) 日本的温室气体和其他痕量气体(WDCGG) 美国的降水化学(WDCPC) 俄罗斯的太阳辐射(WRDC) 挪威的表面臭氧(WDCSO) 加拿大的紫外线辐射和臭氧(WOUDC) WMO GAW 臭氧测绘中心(WO 3希腊
平流层吸收太阳辐射的有害部分,从而保护地球表面的生命(以目前的形式)。由于人为排放臭氧消耗物质(ODS,如氟利昂),平流层臭氧层一直处于危险之中。由于《蒙特利尔议定书》(1987 年,以及随后的修订和调整)缔约方采取的行动,臭氧层有望在未来几十年内恢复。我们呼吸的空气中的臭氧是大都市地区的主要空气污染物,被称为光化学烟雾,臭氧是决定大气氧化能力的主要物质,参与从对流层空气中去除许多化合物(包括有毒物质)的过程。最后但并非最不重要的是,对流层顶区域的臭氧是一种强温室气体。为了研究这些重要问题,可靠的现场测量非常重要。世界气象组织 (WMO) 全球大气监测 (GAW) 计划的主要内容之一是利用相对小巧轻便的气球(臭氧探空仪)进行测量,这些气球可提供臭氧的垂直分布数据,而这些数据对于了解臭氧在大气中发挥的关键作用至关重要。臭氧探空仪的定期测量始于 20 世纪 60 年代后半期,当时只有少数几个
每年,数十亿美元被投入到太空应用的研究和开发中,包括新系统、新技术和新材料。DLC(类金刚石碳)是一种很有前途的材料,但其使用面临技术障碍,因为它会被原子氧和臭氧严重腐蚀。在本研究中,SiOx-DLC 薄膜被沉积在 Ti-6Al-4V 基材上作为类金刚石碳 (DLC) 膜的顶层,以提高对原子氧和臭氧的耐腐蚀性,并满足低地球轨道 (LEO) 卫星的使用要求。使用氧等离子体评估了薄膜的耐腐蚀性,并研究了摩擦学和机械性能。SiOx-DLC 顶层将腐蚀速率降低了两个数量级,并将临界载荷从 16.2 ± 1.5 N 提高到 18.4 ± 0.4 N。
摘要:食品工业中微生物控制的需求促进了食品加工技术的研究。臭氧被认为是一种有前途的食物保存技术,并且由于其强大的氧化特性和显着的抗菌效率而引起了极大的兴趣,并且由于其分解量没有留下食物中的残留物。在这项臭氧技术综述中,臭氧的特性和氧化潜力以及影响气体和水性臭氧的微生物灭活效率的固有和外在因素,都解释了食品本机构的臭氧灭菌的机制,以及食品本质上的冰期原理,霉菌,fileforia,fimgi,Fungi,Fungi,Fungi and fungi and fungi and fungi and。本综述着重于有关臭氧在控制微生物增长,保持食物外观和感官有机疗法品质,确保营养含量,增强食品质量以及延长食品架子寿命的影响的最新科学研究上,例如,蔬菜,水果,肉类和谷物和谷物。臭氧在气态和水性形式中的多功能效应促进了其在食品行业中的使用,以满足消费者对健康饮食和即食产品的偏爱,尽管臭氧对高浓度的某些食品对某些食品的物理化学特征产生不良影响。臭氧和其他技术(障碍技术)的综合用途表现出了食品加工方面的促进未来。可以从这篇综述中得出结论,臭氧技术在食品上的应用需要增加研究。特定地,使用治疗条件(例如浓度和湿度)用于食物和表面净化。