Paul Wrzesinski博士是高级技术专家办公室(AIR-20)的航空燃料高级技术专家(STS)。以这种能力,他确定并减轻与航空燃料和添加剂,替代航空燃料,燃料供应基础设施,推进润滑油和其他航空燃料问题有关的航空安全和安全风险,这些航空燃料,燃料供应基础设施以及其他航空燃料问题与航空燃料问题有关,因为它们与认证和操作要求,政策形成以及研究以及研究相关的航空安全问题。
▶ 本报告将 Syzygy 的 SAF 技术与传统 Jet A 航空燃料、电转液 (PtL) SAF 和基于乙醇的酒精转喷气 (ATJ-e) SAF 进行了比较。▶ 本报告评估了油井到尾流系统边界,涵盖了从原材料提取和运输到燃料生产和燃烧的所有上游和下游影响。▶ Boundless 评估了 Syzygy 的 SAF 产品以及竞争航空燃料的环境性能,特别是与它们的温室气体 (GHG) 足迹和水足迹相关。▶ Syzygy 的 SAF 的温室气体足迹为每兆焦耳 (MJ) -2.50 克二氧化碳当量 (g CO 2 e),比传统 Jet A 航空燃料低 103%。▶ Syzygy 的 SAF 的水足迹为每 MJ 0.0253 升 (L),比传统 Jet A 航空燃料低 59.1%。 ▶ 考虑到市场渗透率和每年 3874 万兆焦 SAF 的预计生产率,使用 Syzygy SAF 代替 Jet A 可在 2024 年至 2030 年期间总共减少超过 24.8 千吨二氧化碳当量的温室气体排放。
摘要:减少航空排放很重要,因为它们有助于空气污染和气候变化。已经提出了几种可能减少生命周期排放的替代航空燃料。燃料的比较生命周期评估(LCA)对于检查单个燃料很有用,但是系统范围的分析仍然很困难。因此,诸如车队组成,性能或排放等系统特性以及在替代燃料下对它们的变化只能在LCA中部分解决。通过将地理空间燃料和排放模型(Aviteam和LCA)整合在一起,我们可以评估在210 000个较短的拖拉飞行中,在范围内使用替代航空燃料的缓解潜力。在乐观的情况下,液体氢(LH2)和电力燃料燃料在用可再生电力产生时,使用GWP100公吨进行评估时,可能会将排放量减少约950 GGCO 2 EQ,并在所有飞行中包括非CO 2的影响。缓解电势从较短的航班的44%到较长航班的56%。替代航空燃料的缓解潜力受到短暂的气候强迫和额外的燃料需求以适应LH2燃料的限制。我们的结果强调了将系统模型整合到LCA中的重要性,并对从事航空和运输部门进行气候变化的研究人员和决策者具有价值。关键字:ADS-B,航空排放,生命周期评估,LCA,替代航空燃料,SAF,飞行燃料消耗模型
• ReFuelEU 航空法规 7 将设定目标,以增加可持续航空燃料 (SAF) 的生产、供应和需求,符合条件的 SAF 是合成航空燃料,包括先进生物燃料、非生物来源的可再生燃料 (RNFBO) 和符合 RED III 可持续性和减排标准的再生碳航空燃料。因此,它将增加对用于生产 SAF 的先进生物燃料的需求。其后果可能是使用其他生物燃料、生物液体和生物质来满足 RED III 中适用的可再生能源使用增加的目标。这可能会导致对森林生物质的需求增加。
射击的干净燃料和产品认识到,DOE和其他针对目标的燃料和化学品采取了各种不同的脱碳选择。可持续的航空燃料大挑战和由此产生的路线图指南DOE在航空排放和目标方面的策略,到2050年用可持续航空燃料取代100%的航空燃料。对于海上,铁路,o孔和碳氢化合物化学物质,除了使用可持续碳氢化合物的替代品替换外,还将继续采用其他脱碳途径。例如,在海上排放中,正在考虑使用氨,甲醇,氢,燃料电池和其他脱碳方法。设定了能量射击目标,同时认识到其中一些解决方案可能会补充能量大地的碳氢化合物替代品,并且这些扇区设置为50%的替代品。
氢化转化和氢化物将生物基本原料纳入航空燃料 - 生物基和废物流的纯化和价值,固定床催化剂的合成,长期飞行量表测试
长期燃料前景更新继续支持 Channel 的业务,受航空燃料需求和航空液体燃料脱碳途径支撑,尽管短期内可能会受到经济状况和飞机可用性的影响
2021 年 9 月,美国农业部 (USDA)、美国能源部 (DOE) 和美国运输部 (DOT) 签署谅解备忘录,宣布启动可持续航空燃料 (SAF) 大挑战。1 SAF 大挑战提出了一项全政府努力,包括美国国防部 (DOD)、美国国家航空航天局 (NASA) 和环境保护署 (EPA),以帮助推动创新,降低成本、增强可持续性并扩大 SAF 的生产和使用。SAF 大挑战设定的目标是到 2030 年,每年生产 30 亿加仑的国内 SAF,与传统航空燃料相比,其生命周期温室气体 (GHG) 排放量至少减少 50%,到 2050 年,每年生产 350 亿加仑的 SAF,以满足美国预计航空燃料使用量的 100%。