使用台式NMR光谱仪通过与其他时间分辨技术进行比较(例如高场NMR,气相色谱33和IR光谱法)来进行反应监测。34类似的研究还强调了将台式NMR与互补的在线反应监测技术(例如IR 35-37和质谱法)38一起使用,以最大程度地提高有关反应系统获得的信息。过渡到较弱的磁场强度可能会导致敏感性和化学位置分散剂的挑战。在敏感性方面,NMR光谱的信噪比(SNR)大约用B 3/2 0缩放,因此当使用较弱的台式NMR磁铁时,灵敏度固有降低。39此外,Hz中的化学位移色散与B 0线性增加,因此化学移位轴在较低的场上被压缩。这可能导致光谱充血,峰重叠和由于强耦合影响而导致二阶峰值模式的潜力增加。40
基于具有可见的红外光子对源的非线性干涉仪,利用成对生成过程的量子干扰,红外量子光谱仪,可以通过可见的光子检测来提取样品的红外光学特性,而无需用于基础光学源或检测器。我们为量子傅立叶转换红外(QFTIR)光谱制定了理论框架。所提出的傅立叶分析方法完全利用了干涉图中的相位信息,使我们能够在简单设置中确定复杂的透射率和光学常数,而无需用于光谱选择的任何色散光学器件。在实验演示中,使用低增益状态下操作的QFTIR在近红外区域测量了带通滤波器和硅胶折射率的透射光谱;这些结果与使用常规光谱仪和从参考文献估算的值非常吻合。这些示范证明了QFTIR光谱的有效性和巨大潜力。
寻找具有直接带隙和高载流子迁移率的二维 (2D) 稳定材料因其在电子设备中的应用而受到广泛关注。利用第一性原理计算和粒子群优化 (PSO) 方法,我们预测了一种具有二维空间全局最小值的新型 2D 稳定材料 (HfN 2 单层)。HfN 2 单层具有直接带隙 (∼ 1.46 eV),根据变形势理论预测其具有高载流子迁移率 (∼ 10 3 cm 2 · V − 1 · s − 1)。在应变条件下,通过施加简单的外部应变可以很好地保持和灵活调节直接带隙。此外,新预测的 HfN 2 单层具有良好的热稳定性、动力学稳定性和机械稳定性,这通过从头算分子动力学模拟、声子色散和弹性常数得到了验证。这些结果表明 HfN 2 单层是未来微电子器件中很有前途的候选材料。
在各种物理系统中利用幂律相互作用 (1 / r α ) 的做法正在日益增多。我们研究手性自旋链的动力学作为一种可能的多向量子通道。这源于具有复杂量子干涉效应的色散的非线性特性。利用互补的数值和分析技术,我们提出了一个模型来引导量子态向所需的方向发展。我们使用受 Dzyaloshinskii-Moriya (DM) 相互作用调制的长程 XXZ 模型来说明我们的方法。通过探索局部量子猝灭后的非平衡动力学,我们确定了相互作用范围 α 和 Dzyaloshinskii-Moriya 耦合的相互作用,从而导致了明显的非对称自旋激发传输。这对于量子信息协议传输量子态可能很有趣,而且可以通过当前的离子阱实验进行测试。我们进一步探索了这些系统中块纠缠熵的增长,发现数量级的减少。
为了使超导量子比特成为大规模量子信息处理的可行平台,需要高保真度的读出。本论文研究了描述初始化和读出序列中的系统和时间演化的底层物理,以研究不同的物理参数如何影响状态准备和测量 (SPAM) 误差。通过校准单个超导量子比特,使用随机主方程建立了一个模拟模型来模拟量子比特谐振器系统的色散近似。该模型能够生成具有与实验室测量相似的分布和 SPAM 保真度的 IQ 测量的真实图。该模型用于估计三个因素对不保真度的贡献:非零温度、测量过程中的能量衰减和低效测量。我们得出结论,非零温度是所分析系统的最大贡献者。该模型进一步用于模拟具有边际改进的系统。这为讨论如何改进超导量子比特读出提供了基础。
我们报告了CMOS拆分硅纳米线晶体管中双重量子点的快速电荷状态读数,这是通过与超导能力的混合元素集成形成的大元元素谐振器中与微波光子的大分散相互作用。我们通过利用不对称的拆分门设备的较大的间点闸门杆臂α= 0.72,并通过电感耦合到谐振器增加其阻抗,z r = 560。在色散状态下,双量子点杂交点处的较大耦合强度可产生与谐振器线宽相当的频移,这是最大状态可见性的最佳设置。我们利用该制度来证明对自由度的快速分散读数,SNR在50 ns中为3.3。在谐振方案中,快速电荷的分解速率无法达到强耦合方案,但我们使用混合CMOS系统显示了向自旋光子电路量子电动力学的明确途径。
色散工程和高度非线性纳米光子学的出现有望通过将高横向场约束与超短脉冲操作相结合,开辟一条通往量子光学强相互作用领域的全光学途径。然而,要全面了解此类宽带设备中的光子动力学,对多模非高斯量子物理的建模和仿真提出了重大挑战,这凸显了对复杂的简化模型的需求,这些模型有助于进行有效的数值研究,同时提供有用的物理见解。在本文中,我们回顾了我们最近在不同抽象和通用水平上对宽带光学系统建模的努力,从同步泵浦振荡器的量子输入输出理论的多模扩展到基于非线性波导场论描述的数值方法的开发。我们希望我们的工作不仅能指导正在进行的理论和实验工作,以实现下一代量子设备,还能揭示宽带量子光子学的基本物理原理。
摘要:硅光子学最近已将其应用扩展到提供自由空间发射以检测或操纵外部物体。最显著的例子是硅光学相控阵,它可以引导自由空间光束以实现芯片级固态激光雷达。其他例子包括自由空间光通信、量子光子学、成像系统和光遗传学探针。与由体光学元件组成的传统光学系统相比,硅光子学将光学系统小型化为具有许多功能波导元件的光子芯片。通过利用成熟的单片 CMOS 工艺,硅光子学实现了大批量生产、可扩展性、可重构性和并行性。在本文中,我们回顾了基于硅光子学的光束控制技术的最新进展,包括光学相控阵、焦平面阵列和色散光栅衍射。还讨论了用于产生准直、聚焦、贝塞尔和涡旋光束的各种光束整形技术。最后,我们展望了硅光子学在自由空间应用的前景和挑战。
所研究的样品是NAYF4:YB,ER UCNP,具有聚乙胺(PEI)聚合物涂层,分散在浓度为10 mg/ml的去离子水中。UCNP色散以10 mm×10 mm石英比色杯持有,并使用FS5光谱荧光计进行了表征。为激发,FS5配备了带有脉冲调制盒(PM-2)的2W 980 nm激光二极管,可同时使用CW和脉冲操作。用于检测,FS5配备了两个光电探测器:PMT-900和PMT-1010(FS5-NIR升级)和多通道缩放(MCS)寿命电子电子产品。频谱范围为200-900 nm的PMT-900用于光谱和寿命测量,而其扩展光谱范围为1010 nm的PMT-1010用于确定量子屈服。样品比色杯持有用于光谱和寿命测量的SC-05标准比色杯模块,而SC-30集成球模块用于量子屈服测量。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。